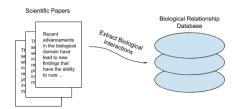


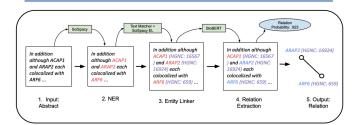
Biomedical Information Extraction For Disease Gene Prioritization

Jupinder Parmar^{1,2,*}, William Koehler^{2,*}, Martin Bringmann², Katharina Sophia Volz², Berk Kapicioglu^{2,*}


¹Stanford University, jsparmar@stanford.edu

²OccamzRazor, {william, martin, volz, berk}@occamzrazor.com

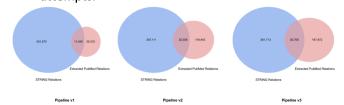
Biomedical Information Extraction (IE)


 Understanding diseases and developing curative therapies requires extracting and synthesizing relevant knowledge from vast swaths of biomedical information.

Our Contribution

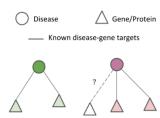
- We built an end-to-end biomedical IE pipeline that outperforms existing state of the art for biomedical IE.
- Ran our pipeline over the PubMed corpus to extract protein-protein interactions (PPIs).
- Augmented an existing biomedical knowledge graph, DisGeNet, that already contains PPIs from STRING with our extracted PPIs and demonstrate that the augmentation yields a 20% relative increase in hit@30 for predicting novel disease-gene associations.

Information Extraction Pipeline



 Augmented leading NLP models to achieve better performance for the biomedical domain.

System	Precision	Recall	F1	System	Precision	Recall	F1	
v1 v2 v3 Masked BioBERT	43.24 41.17 31.37 29.87	45.71 50.00 68.57 70.00	44.44 45.16 43.04 41.88	Our Model PubTator ScispaCy	78.41 58.96 37.81	73.87 49.20 57.96	76.0 3 45.76 53.66	
RE Results				NER Results				


Extracting Relations from PubMed

 Ran three versions of the pipeline over 10 million PubMed abstracts that each extract more PPIs than previous information extraction attempts.

Disease Gene Prioritization

 Despite DisGeNet containing PPIs from STRING, a structured database, our extracted relations boost performance in the task of disease gene identification.

	MR	MP	hit@30	hit@3	hit@1
IE v3 + STRING + DisGeNET	1418.397	92.484	37.367%	15.302%	7.829%
IE v2 + STRING + DisGeNET	1441.802	92.262	35.409%	14.057%	7.473%
IE v1 + STRING + DisGeNET	1829.548	89.869	32.74%	13.701%	6.762%
STRING + DisGeNET	1952.084	89.362	31.139%	13.879%	7.651%
DisGeNET	7422.117	59.544	0.356%	0.178%	0.178%

Discussion

 Our pipeline not only is able to identify a large amount of PPIs, but these relations are high quality as they improve performance on a downstream task.

Ongoing and Future Work

- Train pipeline to extract additional biomedical relationships.
- Utilize extracted PPIs in additional tasks.