Biomedical Information Extraction For Disease Gene Prioritization Jupinder Parmar^{1,2,*}, William Koehler^{2,*}, Martin Bringmann², Katharina Sophia Volz², Berk Kapicioglu^{2,*} ¹Stanford University, jsparmar@stanford.edu ²OccamzRazor, {william, martin, volz, berk}@occamzrazor.com ### Biomedical Information Extraction (IE) Understanding diseases and developing curative therapies requires extracting and synthesizing relevant knowledge from vast swaths of biomedical information. #### **Our Contribution** - We built an end-to-end biomedical IE pipeline that outperforms existing state of the art for biomedical IE. - Ran our pipeline over the PubMed corpus to extract protein-protein interactions (PPIs). - Augmented an existing biomedical knowledge graph, DisGeNet, that already contains PPIs from STRING with our extracted PPIs and demonstrate that the augmentation yields a 20% relative increase in hit@30 for predicting novel disease-gene associations. # Information Extraction Pipeline Augmented leading NLP models to achieve better performance for the biomedical domain. | System | Precision | Recall | F1 | System | Precision | Recall | F1 | | |----------------------------------|---|---|---|-----------------------------------|--------------------------|--------------------------|---------------------------|--| | v1
v2
v3
Masked BioBERT | 43.24
41.17
31.37
29.87 | 45.71
50.00
68.57
70.00 | 44.44
45.16
43.04
41.88 | Our Model
PubTator
ScispaCy | 78.41 58.96 37.81 | 73.87 49.20 57.96 | 76.0 3 45.76 53.66 | | | RE Results | | | | NER Results | | | | | # **Extracting Relations from PubMed** Ran three versions of the pipeline over 10 million PubMed abstracts that each extract more PPIs than previous information extraction attempts. #### **Disease Gene Prioritization** Despite DisGeNet containing PPIs from STRING, a structured database, our extracted relations boost performance in the task of disease gene identification. | | MR | MP | hit@30 | hit@3 | hit@1 | |---------------------------|----------|--------|---------|---------|--------| | IE v3 + STRING + DisGeNET | 1418.397 | 92.484 | 37.367% | 15.302% | 7.829% | | IE v2 + STRING + DisGeNET | 1441.802 | 92.262 | 35.409% | 14.057% | 7.473% | | IE v1 + STRING + DisGeNET | 1829.548 | 89.869 | 32.74% | 13.701% | 6.762% | | STRING + DisGeNET | 1952.084 | 89.362 | 31.139% | 13.879% | 7.651% | | DisGeNET | 7422.117 | 59.544 | 0.356% | 0.178% | 0.178% | | | | | | | | #### Discussion Our pipeline not only is able to identify a large amount of PPIs, but these relations are high quality as they improve performance on a downstream task. # Ongoing and Future Work - Train pipeline to extract additional biomedical relationships. - Utilize extracted PPIs in additional tasks.