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General Problem

Goals:

e Given sparse location data from a user, can we
still predict where the user is going to be at any

arbitrary time in the future?
Applications:

e Automated traffic alerts.
e Contextual venue recommendations.

e |Location-based advertisement.

Sparsity in Location Data

Sparsity: Very few observations per user.

Causes:

e Battery constraints. e User privacy.

Dense Dataset Sparse Dataset

Number of observations per user (sparse dataset)

Number of observations per user (dense dataset)
Mean: 107.3, Median: 74.0

Mean: 1172.2, Median: 1114.0
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Remarks:

e Sparse dataset has 15x less observations per
user than dense dataset!

e Harder to infer spatiotemporal patterns under
sparsity.

e Sparsity is becoming increasingly common

among location datasets.
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Collaborative Place Model
e A generalization of Gaussian Mixture Model
(GMM).
e Like GMM, it learns the latent place clusters for
each user (i.e. "home”, “work”, “gym”, etc.).
e Unlike GMM, it also learns the latent temporal

patterns shared across the users.

Continued...

Thus, even if we observe a user very few times,
we can complete the user's missing data by

relying on population-wide temporal patterns.

Temporal Assumptions

We can encode the temporal patterns using
either the “Strong Similarity” or “Weak Similarity”
assumptions.

Strong similarity assumes that, at a given
weekhour, all users share the exact same place
distributions.

“Probability that all users are at home Sunday

O9am is 98%.”
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e Unfortunately, under this assumption, users are
forced to have
o The same number of places,
o The same distribution over these places.
e Weak similarity assumes that
o Each user has her own factorized place
distribution,
Each weekhour has its own factor weights
shared across all users.
A user’s place distribution is a convex
combination of user-specific factor

distributions and weekhour-specific factor

-

weights.
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e Weak similarity assumption is better because
o Unlike strong similarity, users can have
different number of places and different
distribution over these places,

o Like strong similarity, we can make

predictions for weekhours even if the user has

not been observed during that hour before.
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Experiments

For inference, we derive and implement a
collapsed Gibbs sampler.

We run experiments on both sparse and dense
datasets.

First, we compare the held-out log-likelihoods of

CPM vs. GMM:

Test log-likelihood (dense dataset)
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Test log-likelihood (sparse dataset)

With respect to
likelihood, CPM

o outperforms
1/t | GMM by 8%.
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e Second, we show the weekhour-specific factor
weights (i.e. 4 ) that are shared across all users.
e Dense dataset is at top and sparse dataset is at

bottom.
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e [or sparse dataset, factors are home and work.

e Lastly, we compare the inferred and empirical
place distributions of a user from the sparse
dataset.

e The inferred distribution (left) is much smoother

than the empirical distribution (right).
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