
Chess2vec: Learning Vector
Representations for Chess

 Berk Kapicioglu Ramiz Iqbal Tarik Koc Louis Nicolas Andre Katharina Sophia Volz

 OccamzRazor MD Anderson OccamzRazor OccamzRazor OccamzRazor

Chess and Machine Learning

Modern computer chess programs, such as AlphaZero
and DeepChess, are fundamentally based on machine
learning.

How is machine learning used in computer chess?
One way is to learn a function that maps chess positions to
board moves.

Modern computer chess programs use machine learning to
learn this function or one of its variants.

Our Contribution

In order to train models and make inferences on chess
positions, one needs a computational way to represent
them.

In modern applications, chess positions are typically
represented via the bitboard representation.

In this work, we conduct the first qualitative and
quantitative study about learning alternative
representations for chess pieces and positions.

PCA (continued)

Principal components of Stockfish moves

Loading vectors of Stockfish moves

Read the paper for a discussion on the insights this
decomposition provides about the game of chess!

Computer Chess

Computer chess studies algorithms that play chess.

Deep Blue, developed by IBM, defeated the world chess
champion in 1996.

Historically, chess programs, such as Deep Blue, did not
leverage machine learning (ML).

Instead, they leveraged tree search, minimax, alpha-beta
pruning, and hand-crafted position evaluation algorithms.

Bitboard Representation

The standard representation of chess positions is the
bitboard representation. It is a binary
tensor.

Key insight: The bitboard representation can be specified
by assigning a 12-dimensional indicator vector to each
piece type and color.

Key question: Are there better vector representations that
can be assigned to each piece type and color?

Datasets

We generate two datasets using Stockfish, the leading
computer chess engine in the world.

In each dataset, we log the number of times a white piece
has been observed to make a specific board move.

1) Legal Moves Dataset
Generate legal moves for each piece type on an empty
board.

2) Expert Moves Dataset
Generate expert moves by pitting a white Stockfish agent
play against a weaker black Stockfish agent.

Each dataset yields .

Key idea: Pieces with similar movement patterns have
similar features.

PCA

We decompose the matrix and obtain both chess piece
embeddings and a qualitative understanding of the
fundamental building blocks of chess moves.

Principal components of legal moves

Loading vectors of legal moves

Position-dependent Piece Vectors

Potential Problem: Piece vectors are constant with
respect to chess positions.

Solution: Use Zobrist hashing!

Instead of generating a unique vector for each piece, we
generate one for each piece and hash bucket. The hash
partitions the space of all chess positions.

Intuition: The reconstruction approximates the number of
times a move has been selected for all the chess positions
that are hashed into that bucket.

Ongoing and Future Work

1) Implemented a neural network to compare how different
chess representations perform in mapping chess
positions to observed moves.

2) Implemented a chess environment in OpenAI gym to
compare how different chess representations perform
when playing against a Stockfish agent.

Experiments

Increasing the number of hash buckets improves the
accuracy of predicting the chosen board move given a
chess position on held-out.

●
●

●
● ● ● ● ●

●

●

● ● ● ●●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0%

2.5%

5.0%

7.5%

10.0%

0 50 100 150 200 250
Number of Components

M
ul

tic
la

ss
 a

cc
ur

ac
y

Hash Buckets
●

●

●

●

●

●

●

●

1

16

64

256

1024

4096

16384

32768

