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1 Problem Formulation

Let U = {1, . . . ,m} be the set of users, let V =

{1, . . . , n} be the set of items, and let T = {1, . . . , T}
indicate the local time. Then, the sample space is de-
fined as

X = {(u,C, i, t) | u 2 U , C ✓ V, i 2 C, t 2 T } . (1)

Let P [·] denote probability, let Ci be the set C exclud-
ing element i, and let c

U⇠ C mean that c is sampled
uniformly from C. Then, the local ranking loss asso-
ciated with hypothesis g is

Lg (u,C, i, t) = P
c

U⇠ Ci

[g (u, i, t)� g (u, c, t)  0] . (2)

2 A Bound on the Generalization

Error

We assume that the hypothesis class is based on the
set of low-rank matrices. Given a low-rank matrix
M , let gM 2 F be the associated hypothesis, where
gM (u, i) = Mu,i. Throughout the paper, we abuse
notation and use gM and M interchangeably. We
assume that data is generated with respect to D,
which is an unknown probability distribution over
the sample space X , and we let E denote expecta-
tion. Then, the generalization error of hypothesis M
is E

(u,C,i)⇠D
LM (u,C, i), which is the quantity we bound

below.

We will derive the generalization bound in two
steps. In the first step, we will bound the empirical
Rademacher complexity of our loss class, defined be-
low, with respect to samples that contain exactly 2

candidates, and in the second step, we will prove the
generalization bound with a reduction to the previous
step.
Lemma 1. Let m be the number of users and

let n be the number of items. Define Lr =

{LM | M 2 Rm⇥n
has rank at most r} as the class of

loss functions associated with low-rank matrices. As-

sume that S2 ✓ X is a set of d samples, where each

sample contains exactly 2 candidate items; i.e. if

(u,C, i) 2 S2, then |C| = 2. Let RS2 (Lr) denote

the Rademacher complexity of Lr with respect to S2.

Then,

RS2 (Lr) 

v

u

u

t

2r (m+ n) ln
⇣

16emn2

r(m+n)

⌘

d
.

Proof. Because each sample in S2 contains exactly
2 candidates, any hypothesis LM 2 Lr applied to
a sample in S2 outputs either 0 or 1. Thus, the
set of dichotomies that are realized by Lr on S2,
called ⇧Lr (S2), is well-defined. Using Equation (6)
from Boucheron et al. [1], we know that RS2 (Lr) 
q

2 ln|⇧Lr (S2)|
d . Let X2 ✓ X be the set of all sam-

ples that contain exactly 2 candidates, |⇧Lr (S2)| 
|⇧Lr (X2)|, so it suffices to bound |⇧Lr (X2)|.

We bound |⇧Lr (X2)| by counting the sign configura-
tions of polynomials using proof techniques that are
influenced by Srebro et al. [4]. Let (u, {i, j} , i) 2 X2

be a sample and let M be a hypothesis matrix. Be-
cause M has rank at most r, it can be written as
M = UV T , where U 2 Rm⇥r and V 2 Rn⇥r. Let J·K
denote an indicator function that is 1 if and only if its
argument is true. Then, the loss on the sample can also
be rewritten as LM (u, {i, j} , i) = JMu,i�Mu,j  0K =
J
�

UV T
�

u,i
�
�

UV T
�

u,j
 0K = J

r
P

a=1
Uu,a (Vi,a � Vj,a) 

0K. Since cardinality of X2 is at most 2m
�n
2

�

 mn2,
putting it all together, it follows that |⇧Lr (X2)| is
bounded by the number of sign configurations of mn2

polynomials, each of degree at most 2, over r (m+ n)
variables. Applying Corollary 3 from Srebro et al. [4],

we obtain |⇧Lr (X2)| 
⇣

16emn2

r(m+n)

⌘r(m+n)
. Taking log-

arithms and making basic substitutions yield the de-
sired result.

We proceed to proving the more general result via a
reduction to Lemma 1.
Theorem 1. Let m be the number of users and let n
be the number of items. Assume that S consists of d
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independently and identically distributed samples cho-

sen from X with respect to a probability distribution D.

Let LM be the loss function associated with a matrix

M , as defined in Equation 2. Then, with probability

at least 1� �, for any matrix M 2 Rm⇥n
with rank at

most r,

E
(u,C,i)⇠D

LM (u,C, i)  E
(u,C,i)

U⇠S

LM (u,C, i)

+ 2

s

2r (m+ n) ln
�

16emn
r

�

d
+

s

2 ln

�

2
�

�

d
. (3)

Proof. We will manipulate the definition of
Rademacher complexity [1] in order to use the
bound given in Lemma 1:

RS (Lr)
.
= E

�

"

sup

LM2Lr

 

1

d

d
X

a=1

�aLM (ua, Ca, ia)

!#

= E
�

"

sup

LM2Lr

 

1

d

d
X

a=1

�a E
ja

U⇠(Ca\{ia})
LM (ua, {ia, ja} , ia)

!#

= E
�

"

sup

LM2Lr

 

E
j1,...,jd

1

d

d
X

a=1

�aLM (ua, {ia, ja} , ia)
!#

 E
�

"

E
j1,...,jd

 

sup

LM2Lr

1

d

d
X

a=1

�aLM (ua, {ia, ja} , ia)
!#

= E
j1,...,jd

"

E
�

 

sup

LM2Lr

1

d

d
X

a=1

�aLM (ua, {ia, ja} , ia)
!#

= E
j1,...,jd

[RS2 (Lr)]
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d
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Plugging the bound to Theorem 3.2 in Boucheron et
al. [1] proves the theorem.

3 Collaborative Local Ranking

Let h (x) = max (0, 1� x) be the hinge function, let M
be the hypothesis matrix with rank at most r, and let
M = UV T , where U 2 Rm⇥r and V 2 Rn⇥r. Then,

we can bound the empirical local ranking loss as

E
(u,C,i)

U⇠S

LM (u,C, i) =
1

|S|
X

(u,C,i)2S

LM (u,C, i)

=

1

|S|
X

(u,C,i)2S

P
c

U⇠ Ci

[Mu,i �Mu,c  0]

=

1

|S|
X

(u,C,i)2S

E
c

U⇠ Ci

JMu,i �Mu,c  0K

=

1

|S|
X

(u,C,i)2S

1

|Ci|
X

c2Ci

J
�

UV T
�

u,i
�
�

UV T
�

u,c
 0K

 1

|S|
X

(u,C,i)2S

1

|Ci|
X

c2Ci

h
⇣

�

UV T
�

u,i
�
�

UV T
�

u,c

⌘

.

(4)

We note that the CLR and the ranking SVM [2] ob-
jectives are closely related. If V is fixed and we
only need to minimize U , then each row of V acts
as a feature vector for the corresponding item, each
row of U acts as a separate linear predictor, and
the CLR objective decomposes into solving simul-
taneous ranking SVM problems. In particular, let
Su = {(a, C, i) 2 S | a = u} be the examples that cor-
respond to user u, let Uu denote row u of U , and let
f rSVM denote the objective function of ranking SVM,
then

fCLR
(S;U, V ) =

�

2

kUk2F

+

1

|S|
X

(u,C,i)2S

1

|Ci|
X

c2Ci

h
⇣

�

UV T
�

u,i
�
�

UV T
�

u,c

⌘

=

m
X

u=1

�

2

kUuk2F

+

m
X

u=1

1

|S|
X

(u,C,i)2Su

1

|Ci|
X

c2Ci

h
⇣

�

UV T
�

u,i
�
�

UV T
�

u,c

⌘

=

m
X

u=1

f rSVM
(Su;Uu, V ) .

4 Algorithms

4.1 Derivation

Let (u,C, i) 2 S be an example, then the correspond-
ing approximate objective function is

fCLR
((u,C, i) ;U, V ) =

�

2

kV k2F

+

1

|Ci|
X

c2Ci

h
⇣

�

UV T
�

u,i
�
�

UV T
�

u,c

⌘

.

We introduce various matrix notation to help us define
the approximate subgradients. Given a matrix M , let
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Algorithm 1 Alternating minimization for optimizing
the CLR objective.
Input: Training data S ✓ X , regularization parame-

ter � > 0, rank constraint r, number of iterations
T .

1: U1  Sample matrix uniformly at random from
h

� 1p
�mr

, 1p
�mr

im⇥r
.

2: V1  Sample matrix uniformly at random from
h

� 1p
�nr

, 1p
�nr

in⇥r
.

3: for all t from 1 to T � 1 do

4: Ut+1  argmin

U
fCLR

(S;U, Vt)

5: Vt+1  argmin

V
fCLR

(S;Ut+1, V )

6: return UT , VT .

Mk,· denote row k of M . Define the matrix ˆMp,q,z, for
p 6= q, as

ˆMp,q,z
s,· =

8

>

<

>

:

Mz,· for s = p,
�Mz,· for s = q,
0 otherwise,

(5)

and define the matrix ˇMp,q,z
s,· as

ˇMp,q,z
s,· =

(

Mp,· �Mq,· for s = z,
0 otherwise.

(6)

Let J·K denote an indicator function that is 1 if and
only if its argument is true. Then, the subgradient of
the approximate objective function with respect to V
is

rV f
CLR

((u,C, i) ;U, V ) = �V

� 1

|Ci|
X

c2Ci

J
�

UV T
�

u,i
�
�

UV T
�

u,c
< 1K ˆU i,c,u. (7)

Setting ⌘t =

1
�t as the learning rate at iteration t,

the approximate subgradient update becomes Vt+1 =

Vt� ⌘trV f
CLR

((u,C, i) ;U, V ). After the update, the
weights are projected onto a ball with radius 1p

�
. The

pseudocode for optimizing both convex subproblems is
depicted in Algorithms 2 and 3. We prove the correct-
ness of the algorithms and bound their running time
in the next subsection.

4.2 Analysis

The convex subproblems we analyze have the general
form

min

X2D
f (X; `) = min

X2D

�

2

kXk2F+
1

|S|
X

(u,C,i)2S

` (X; (u,C, i)) .

(8)

Algorithm 2 Projected stochastic subgradient de-
scent for optimizing U .
Input: Factors V 2 Rn⇥r, training data S, regular-

ization parameter �, rank constraint r, number of
iterations T .

1: U1  0

m⇥r

2: for all t from 1 to T � 1 do

3: Choose (u,C, i) 2 S uniformly at random.
4: ⌘t  1

�t

5: C+  
n

c 2 Ci |
�

UtV
T
�

u,i
�
�

UtV
T
�

u,c
< 1

o

6: Ut+1  (1� ⌘t�)Ut +
⌘t

|Ci|
P

c2C+

ˇV i,c,u

7: Ut+1  min

n

1, 1p
�kUt+1kF

o

Ut+1

8: return UT .

Algorithm 3 Projected stochastic subgradient de-
scent for optimizing V .
Input: Factors U 2 Rm⇥r, training data S, regular-

ization parameter �, rank constraint r, number of
iterations T .

1: V1  0

n⇥r

2: for all t from 1 to T � 1 do

3: Choose (u,C, i) 2 S uniformly at random.
4: ⌘t  1

�t

5: C+  
n

c 2 Ci |
�

UV T
t

�

u,i
�
�

UV T
t

�

u,c
< 1

o

6: Vt+1  (1� ⌘t�)Vt +
⌘t

|Ci|
P

c2C+

ˆU i,c,u

7: Vt+1  min

n

1, 1p
�kVt+1kF

o

Vt+1

8: return VT .

One can obtain the individual subproblems by specify-
ing the domain D and the loss function `. For example,
in case of Algorithm 2, the corresponding minimization
problem is specified by

min

X2Rm⇥r
f (X; `V ) where

`V (X; (u,C, i)) =
1

|Ci|
X

c2Ci

h
⇣

�

XV T
�

u,i
�
�

XV T
�

u,c

⌘

,

(9)

and in case of Algorithm 3, it is specified by

min

X2Rn⇥r
f (X; `U ) where

`U (X; (u,C, i)) =
1

|Ci|
X

c2Ci

h
⇣

�

UXT
�

u,i
�
�

UXT
�

u,c

⌘

.

(10)

Let U?
= argminU f (U ; `V ) and V ?

=

argminV f (V ; `U ) denote the solution matrices
of Equations 9 and 10, respectively. Also, given a
general convex loss ` and domain D, let ¯X 2 D be an



Berk Kapicioglu, David S. Rosenberg, Robert E. Schapire, Tony Jebara

✏-accurate solution for the corresponding minimization
problem if f

�

¯X; `
�

 minX2D f (X; `) + ✏.

In the remainder of this subsection, we show that Al-
gorithms 2 and 3 are adaptations of the Pegasos [3]
algorithm to the CLR setting. Then, we prove certain
properties that are prerequisites for obtaining Pega-
sos’s performance guarantees. In particular, we show
that the approximate subgradients computed by Al-
gorithms 2 and 3 are bounded and the loss functions
associated with Equations 9 and 10 are convex. In the
end, we plug these properties into a theorem proved by
Shalev-Shwartz et al. [3] to show that our algorithms
reach an ✏-accurate solution with respect to their corre-
sponding minimization problems in ˜O

�

1
�2✏

�

iterations.

Lemma 2. kU?k  1p
�

and kV ?k  1p
�
.

Proof. One can obtain the bounds on the norms of the
optimal solutions by examining the dual form of the
optimization problems and applying the strong duality
theorem. Equations 9 and 10 can both be represented
as

min

v2D

1

2

kvk2 +
K
X

k=1

ekh (fk (v)) , (11)

where ek =

1
�|S||Ck| is a constant, h is the hinge func-

tion, D is a Euclidean space, and fk is a linear func-
tion. We rewrite Equation 11 as a constrained opti-
mization problem

min

v2D,⇠2RK

1

2

kvk2 +
K
X

k=1

ek⇠k (12)

subject to ⇠k � 1� fk (v) , k = 1, . . .K,

⇠k � 0, k = 1, . . .K.

The Lagrangian of this problem is

L (v, ⇠,↵,�) =
1

2

kvk2 +
K
X

k=1

ek⇠k

+

K
X

k=1

↵k (1� fk (v)� ⇠k)�
K
X

k=1

�k⇠k

=

1

2

kvk2 +
K
X

k=1

⇠k (ek � ↵k � �k)

+

K
X

k=1

↵k (1� fk (v)) ,

and its dual function is

g (↵,�) = inf

v,⇠
L (v, ⇠,↵,�) .

Since L (v, ⇠,↵,�) is convex and differentiable with re-
spect to v and ⇠, the necessary and sufficient conditions

for minimizing v and ⇠ are

rvL = 0 , v =

K
X

k=1

↵krvfk (v) ,

r⇠L = 0 , e = ↵+ �. (13)

We plug these conditions back into the dual function
and obtain

g (↵,�) = inf

v,⇠
L (v, ⇠,↵,�)

=

1

2

�

�

�

�

�

K
X

k=1

↵krvfk (v)

�

�

�

�

�

2

+

K
X

k=1

↵k

 

1� fk

 

K
X

k=1

↵krvfk (v)

!!

=

1

2

�

�

�

�

�

K
X

k=1

↵krvfk (v)

�

�

�

�

�

2

+

K
X

k=1

↵k (14)

�
K
X

k=1

↵kfk

 

K
X

k=1

↵krvfk (v)

!

.

Since fk is a linear function, we let fk (v) = ~k ·v, where
~k is a constant vector, and rvfk (v) = ~k. Then,
�

�

�

�

�

K
X

k=1

↵krvfk (v)

�

�

�

�

�

2

=

�

�

�

�

�

K
X

k=1

↵k
~k

�

�

�

�

�

2

=

 

K
X

k=1

↵k
~k

!

·
 

K
X

k=1

↵k
~k

!

=

K
X

k=1

↵k
~k ·
 

K
X

k=1

↵k
~k

!

=

K
X

k=1

↵kfk

 

K
X

k=1

↵k
~k

!

=

K
X

k=1

↵kfk

 

K
X

k=1

↵krvfk (v)

!

.

(15)

Simplifying Equation 14 using Equation 15 yields

g (↵,�) = �1

2

�

�

�

�

�

K
X

k=1

↵krvfk (v)

�

�

�

�

�

2

+

K
X

k=1

↵k

= �1

2

�

�

�

�

�

K
X

k=1

↵k
~k

�

�

�

�

�

2

+

K
X

k=1

↵k. (16)

Finally, we combine Equations 13 and 16, and obtain
the dual form of Equation 12,

max

↵
� 1

2

�

�

�

�

�

K
X

k=1

↵k
~k

�

�

�

�

�

2

+

K
X

k=1

↵k (17)

subject to 0  ↵k  ek, k = 1, . . .K.
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The primal problem is convex, its constraints are lin-
ear, and the domain of its objective is open; thus,
Slater’s condition holds and strong duality is obtained.
Furthermore, the primal problem has differentiable ob-
jective and constraint functions, which implies that
(v?, ⇠?) is primal optimal and (↵?,�?

) is dual optimal
if and only if these points satisfy the Karush-Kuhn-
Tucker (KKT) conditions. It follows that

v? =

K
X

k=1

↵?
k
~k. (18)

Note that we defined ek =

1
�|S||Ck| , where

K
P

k=1
ek =

1
� ,

and the constraints of the dual problem imply 0 

↵k  ek; thus,
K
P

k=1
↵?
k  1

� . Because of strong dual-

ity, there is no duality gap, and the primal and dual
objectives are equal at the optimum,

1

2

kv?k2 +
K
X

k=1

ek⇠
?
k = �1

2

�

�

�

�

�

K
X

k=1

↵?
k
~k

�

�

�

�

�

2

+

K
X

k=1

↵?
k

= �1

2

kv?k2 +
K
X

k=1

↵?
k (by (18))

 �1

2

kv?k2 + 1

�

) kv?k2  1

�
.

This proves the lemma.

Given the bounds in Lemma 2, it can be verified that
Algorithms 2 and 3 are adaptations of the Pegasos [3]
algorithm for optimizing Equations 9 and 10, respec-
tively. It still remains to show that Pegasos’s perfor-
mance guarantees hold in our case.

Lemma 3. In Algorithms 2 and 3, the approximate

subgradients have norm at most

p
�+ 2

q

1
� .

Proof. The approximate subgradient for Algorithm 3
is depicted in Equation 7. Due to the projection step,
kV kF 

1p
�
, and it follows that k�V kF 

p
�. The

term ˆU i,c,u is constructed using Equation 5, and it can
be verified that

�

�

�

ˆU i,c,u
�

�

�

F

p
2 kUkF 

q

2
� . Using

triangle inequality, one can bound Equation 7 withp
� +

q

2
� . A similar argument can be made for the

approximate subgradient of Algorithm 2, yielding the
slightly higher upper bound given in the lemma state-
ment.

We combine the lemmas to obtain the correctness and
running time guarantees for our algorithms.

Lemma 4. Let �  1
4 , let T be the total number of

iterations of Algorithm 2, and let Ut denote the pa-

rameter computed by the algorithm at iteration t. Let

¯U =

1
T

PT
t=1 Ut denote the average of the parameters

produced by the algorithm. Then, with probability at

least 1� �,

f
�

¯U ; `V
�

 f (U?
; `V ) +

21

⇣p
�+ 2

q

1
�

⌘2

ln

�

T
�

�

�T
.

The analogous result holds for Algorithm 3 as well.

Proof. First, for each loss function `V and `U , vari-
ables are linearly combined, composed with the con-
vex hinge function, and then averaged. All these op-
erations preserve convexity, hence both loss functions
are convex. Second, we have argued above that Algo-
rithms 2 and 3 are adaptations of the Pegasos [3] algo-
rithm for optimizing Equations 9 and 10, respectively.
Third, in Lemma 3, we proved a bound on the approx-
imate subgradients of both algorithms. Plugging these
three results into Corollary 2 in Shalev-Shwartz et al.
[3] yields the statement of the theorem.

The theorem below gives a bound in terms of individ-
ual parameters rather than average parameters.

Theorem 2. Assume that the conditions and the

bound in Lemma 4 hold. Let t be an iteration index

selected uniformly at random from {1, . . . , T}. Then,

with probability at least

1
2 ,

f (Ut; `V )  f (U?
; `V ) +

42

⇣p
�+ 2

q

1
�

⌘2

ln

�

T
�

�

�T
.

The analogous result holds for Algorithm 3 as well.

Proof. The result follows directly from combining
Lemma 4 with Lemma 3 in Shalev-Shwartz et al.
[3].

Thus, with high probability, our algorithms reach an
✏-accurate solution in ˜O

�

1
�2✏

�

iterations. Since we ar-
gued in Subsection 4.1 that the running time of each
stochastic update is O (br), it follows that a complete
run of projected stochastic subgradient descent takes
˜O
�

br
�2✏

�

time, and the running time is independent of
the size of the training data.
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