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Abstract

Positioning devices are generating location data at an unprecedented pace. Coupled
with the right software, these data may enable a virtually unlimited number of
valuable services. However, to build such software, there is a need for sophisticated
algorithms that can extract the relevant information from location data. In this
thesis, we use machine learning to develop such algorithms for three fundamental
location-based problems.

First, we introduce a new graphical model for tracking radio-tagged animals
and learning their movement patterns. The model provides a principled way to
combine radio telemetry data with an arbitrary set of spatial features. We apply
our model to real datasets and show that it outperforms the most popular radio
telemetry software package used in ecology, produces accurate location estimates,
and yields an interpretable model of animal movement.

Second, we develop a novel collaborative ranking framework called Collabora-
tive Local Ranking (CLR), which is designed to solve a ranking problem that occurs
frequently in the real-world but has not received enough attention in the scientific
community. In this setting, users provide their affinity for items via local prefer-
ences among a subset of items instead of global preferences across all items. We
justify CLR with a bound on its generalization error and derive an alternating
minimization algorithm with runtime guarantees. We apply CLR to a venue rec-
ommendation task and demonstrate it outperforms state-of-the-art collaborative
ranking methods on real datasets.

Third, we design two Bayesian probabilistic graphical models that predict users’
future geographic coordinates based on sparse observations of their past geographic
coordinates. Our models intelligently share information across users to infer their
locations at any future weekhour, determine the number of significant places and
the spatial characteristics of these places, and compute the conditional distribu-
tions that describe how users spend their time at these places. We apply our models
to real location datasets and demonstrate that, despite the sparsity, they provide
accurate representations of users’ places and outperform existing methods in esti-
mating users’ future locations.
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Introduction

During the last few years, there has been a surge in the amount of location data
that has been generated by positioning devices, which are devices that determine
their users’ location. There are three reasons for this surge. First, recent advances
in hardware have allowed positioning devices to be smaller and use less power [59],
making it easier to embed them into mobile phones. Second, the US government’s
“Enhanced 911” requirement has mandated US wireless carriers to provide accu-
rate location estimates for emergency calls, accelerating the adoption of position-
ing technologies by mobile phone manufacturers [23]. Third, widespread adoption
of positioning hardware has catalyzed the development of location-aware software,
which are software that collect location data to perform their tasks. The culmina-
tion of these factors generated an unprecedented amount of location data in a few
short years.

The number of valuable services that can be provided with such large amounts
of location data is virtually unlimited. For example, with the right software, loca-
tion data can prevent Alzheimer patients from getting lost, automatically deliver
traffic alerts or targeted advertisements based on users’ future location, or predict
the venues that users will visit and make any necessary reservations. However,
collecting large amounts of location data is not sufficient to deliver such services;
instead, we need algorithms that can convert raw location data into a more refined
form these services require. Depending on the problem, this might mean predicting
a user’s future location based on her past locations, or it might mean extracting a
user’s preferences over venues she did not yet visit based on venues she did visit.
These algorithms are not trivial to design, since a user’s location data is generated
by complex processes, and these processes are not necessarily amenable to simple
rules.
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In this thesis, we use machine learning to design and analyze novel algorithms
that leverage location data. As a field that is at the intersection of computer science,
statistics, and applied mathematics, machine learning is the study of algorithms
that improve their performance based on experience. In the general machine learn-
ing setting, one provides the algorithm with a training dataset, the algorithm pro-
cesses it to extract a relevant hypothesis, and this hypothesis is set aside to be
applied to future data. This workflow is preferable to the alternative where re-
searchers extract the hypotheses themselves, because designing such hypotheses
manually requires domain-specific knowledge and the hypotheses extracted might
not easily transfer to new datasets. In contrast, machine learning methods can
more easily adapt to new datasets as long as the assumptions made during the
derivations of the algorithms are still valid.

When designing new algorithms, machine learning researchers focus on opti-
mizing their efficiency and generalization ability. Algorithms are efficient when
they are guaranteed to compute a desired solution in a reasonable amount of time,
which is an important measure when the size of the training data is large. Algo-
rithms generalize well when the hypotheses they extract from their training data
also extend to data that will be processed in the future, such as generalizing from
a user’s past venue visits to infer her preferences over venues she has not visited
yet. In this thesis, we apply these theoretical concepts to each problem we study, in
addition to evaluating our algorithms on synthetic and real location datasets.

In Chapter 1, we assist biologists on a fundamental problem in ecology by de-
veloping algorithms that model how animals move through their environment. For
the past few years, biologists have been studying the plant and animal life that
thrives on the Barro Colorado Island, which is a tropical island in the middle of the
Panama canal. Some of these animals have been tagged with radio transmitters
that allow researchers to track their location, but due to the interference caused by
the rainforest canopy, the resulting signal is extremely noisy. Biologists have also
logged the species and the location of the trees on the island, providing researchers
with valuable features that describe the surrounding geography. In this project,
we combine radio telemetry data and geographical data in a principled way using
a state space model (SSM) to provide accurate estimates of the animals’ locations.
Compared to previous work, our SSM comprises a richer movement model that in-
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corporates spatial features, generalizing Gaussian random walk models that are
associated with Kalman filters, and it yields an interpretable model that enunci-
ates the relationship between the animal and its environment. In order to han-
dle the challenges of incorporating a very large and feature-rich representation of
movement, we derive an efficient stochastic gradient descent algorithm for learn-
ing the parameters of the model. We demonstrate the algorithm’s effectiveness by
comparing it to the expectation-maximization (EM) algorithm, both via asymptotic
analysis and synthetic experiments. Finally, we apply our model to real datasets
and demonstrate that it outperforms the most popular radio telemetry software
package used in ecology.

In Chapter 2, we turn our attention to collaborative filtering, and develop a
new framework for ranking items. In typical collaborative filtering, a learning al-
gorithm is provided with users’ ratings over items they have rated, and in return,
the algorithm is expected to predict users’ ratings over items they have not yet
rated. In contrast to supervised learning algorithms, collaborative filtering algo-
rithms do not require explicit features to be prepared for the users or the items
[28], making it easy to apply them to new domains. Furthermore, collaborative fil-
tering algorithms achieve state-of-the-art performance on recommendation tasks,
and consequently, are the method of choice for companies such as Amazon [34] and
Netflix [5]. Despite their success, existing collaborative filtering methods are not
designed for a common type of recommendation problem, one where users only pro-
vide local preferences instead of global preferences. This type of feedback exists in
many real-world applications, two of which are movie recommendation and venue
recommendation. For example, when users choose to watch a movie after reading
the reviews of a set of candidate movies, they are implicitly preferring the chosen
movie over the reviewed movies, as opposed to preferring the chosen movie over all
other movies. Similarly, when users choose to visit a venue after exploring nearby
venues through a mobile application, they are providing local preferences among
nearby venues instead of providing preferences across all venues.

We call this problem collaborative local ranking and provide a formal character-
ization of it. We prove a Rademacher-based bound on the generalization error using
a hypothesis class of low-rank matrices. We then transform the empirical loss into
a tractable form, derive a simple alternating minimization for it, and prove that
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each minimization step converges to the correct solution in time independent of the
size of the training data. Finally, we demonstrate the performance of our algorithm
on a venue recommendation task and show that it outperforms state-of-the-art col-
laborative ranking methods.

In Chapter 3, we develop probabilistic graphical models for location prediction,
where the goal is to predict users’ future geographic coordinates based on their
past geographic coordinates. Location prediction is a problem [8, 20] that underlies
virtually all location-based tasks, and in fact, De Domenico et al. [12] recently won
Nokia’s Mobile Data Challenge by devising a location prediction algorithm that pre-
dicts where the user is going to be during the next 24 hours. Despite being a prob-
lem of extreme interest, past work on location prediction has focused exclusively on
dense datasets, where location data has been collected with high frequency. This is
a valid assumption for certain datasets, such as those collected by cellular carriers;
however, most location-aware applications can collect location data only when the
user is actively using the application, either due to privacy restrictions or to save
the device’s battery. For example, a reminder application might only record the
user’s location when running in the foreground, and even though it collects very
few location data points from the user during this period, it would nevertheless be
expected to remind the user whenever she arrives at the target destination. Sim-
ilarly, an application which delivers customized news based on the user’s location
might not record any data when running in the background, but it would neverthe-
less be expected to deliver news alerts continuously based on the user’s estimated
location. In fact, as users expect applications to be more intelligent and as location-
aware applications collect location data more judiciously, there will be a growing
need for location prediction algorithms that can leverage sparse datasets.

In order to estimate users’ locations from sparse data, we design two novel
Bayesian probabilistic graphical models. Our models intelligently share informa-
tion across users to infer their locations at any future weekhour even when the user
has not been previously observed on that day or at that hour. In addition to esti-
mating users’ locations, our models infer the number of significant places for each
user, infer the spatial characteristics of these places, and compute the conditional
distributions that describe how users spend their time during each weekhour. We
derive a fast collapsed Gibbs sampler for estimating model parameters and demon-
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strate that our models not only infer significant places accurately, but also achieve
state-of-the-art predictive performance in estimating users’ future locations.

The research described in Chapter 1 was published as Kapicioglu et al. [27],
and it is joint work with Robert Schapire, Martin Wikelski, and Tamara Broderick.
The researches described in Chapters 2 and 3 are currently under submission, and
they are joint work with David Rosenberg, Robert Schapire, and Tony Jebara.
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Chapter 1

Learning Animal Movement

Models

1.1 Background

Animals move through their environments in complex ways. Understanding the
processes that govern animal movement is a fundamental problem in ecology and
has important ramifications in areas such as home-range and territorial dynamics,
habitat use and conservation, biological invasions and biological control [25]. Ecol-
ogists rely heavily on collecting and analyzing animal movement data to deepen
their understanding of these processes.

In recent years, various technological advances, such as radio telemetry systems
and the Global Positioning System (GPS), have created new avenues for collecting
data from animals [57]. In radio telemetry, animals are tagged with a tiny radio
transmitter. At regular time intervals, fixed-location towers in the environment
record the signal from the transmitter and use this information to infer the direc-
tion of the animal with respect to the tower. In contrast to GPS, radio telemetry sys-
tems can use smaller transmitters, can collect data more frequently, are simpler to
implement, and can be used under rainforest canopies. An implementation of such
a system in Barro Colorado Island, called the Automated Radio Telemetry System
Initiative (ARTS), provides researchers access to hundreds of thousands of direc-
tional data measurements collected from a variety of animals [10]. However, even
though this method has led to a proliferation of directional data measurements,
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it has been difficult to harness the full potential of these datasets because: 1) di-
rectional measurements obtained through radio telemetry are notoriously noisy; 2)
telemetry databases may contain very large amounts of data; and 3) directional
measurements are not in a form that is easily interpretable. What is needed are
computational tools that would efficiently and accurately convert these large and
noisy datasets into a form that would enhance ecological research.

Previously, various sequential probabilistic graphical models have been pro-
posed to solve this problem. Anderson-Sprecher and Lodelter [1, 2] used an it-
erated extended Kalman filter-smoother to estimate animal locations. Jonsen et
al. [26, 25] represented animal movements as correlated random walks and used
Bayesian techniques to infer posterior model parameters and animal locations.
Ovaskainen [42] used a diffusion approach to model movement in heterogeneous
landscapes. Morales et al. [38] fitted multiple random walks to animal movement
paths and modeled switching probabilities between them as a function of landscape
variates. Patterson et al. [43] and Schick et al. [48] further review past probabilistic
graphical models and their applications to ecology and animal movement.

In this work, we propose a new state space model (SSM) approach. In con-
trast to previous work, our SSM includes a richer and more general animal move-
ment model. It can utilize arbitrary geographical features, such as the popula-
tion densities of various tree species or the location of water sources, to represent
geographically-dependent animal movement models that cannot be represented by
previous approaches at this generality. While our animal movement model also
generalizes Gaussian random walks, which are models associated with Kalman fil-
ters, combining and incorporating spatial features, especially geographical ones,
yields an interpretable model that enunciates the relationship between the animal
and its environment. Furthermore, a richer model leads to increased accuracy in
estimating animal locations from telemetry data.

In order to handle the challenges of incorporating a very large and feature-rich
latent state space, we present an efficient stochastic gradient algorithm for learn-
ing the parameters of the model. We demonstrate the algorithm’s effectiveness
in training our model by comparing it to the expectation-maximization (EM) algo-
rithm both via asymptotic analysis and synthetic experiments. We note that, in
contrast to sequential Monte Carlo methods such as particle filters, our inference
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algorithms allow us to train parameters and infer past estimates based on all ob-
servations.

Finally, we apply our model to real datasets and demonstrate that it outper-
forms the most popular radio telemetry software package used in ecology. In con-
clusion, we show that our methods aid us in producing interpretable results and
accurate animal location estimates from large and noisy telemetry datasets.

This chapter is organized as follows. In Section 1.2, we specify the SSM and for-
malize its parameter and state estimation problems. In Section 1.3, we detail the
EM, stochastic gradient descent, and Viterbi algorithms for solving the estimation
problems and analyze their time-complexity. We report the results of our experi-
ments on synthetic and real datasets in Section 1.4 and conclude in Section 1.5.

The research described in this chapter was published as [27], and it is joint work
with Robert Schapire, Martin Wikelski, and Tamara Broderick.

1.2 A State Space Model

Our telemetry datasets comprise a long sequence of directional measurements that
are observed by a small number of fixed-location towers at regular time intervals.
Note that all directional measurements in a given telemetry dataset are received
from the same animal. We model the data as if it were generated by an SSM.
In this section, we describe the SSM by detailing its latent state space as well as
its start, transition and observation models. Then, we formalize the parameter
and state estimation problems, and argue how solving the estimation problems
yields an interpretable model of animal movement and accurate animal location
estimates.

Intuitively, the latent state space is the space of all possible animal locations.
In order to use the SSM machinery, we discretize a continuous latent state space of
animal locations into a finite and discrete space of coordinates Q Ω R2. In practice,
Q is constructed by partitioning a larger state space into finitely many equally sized
grid cells and assigning each grid cell midpoint as a coordinate in Q.

The start model generates the first state of the latent animal trajectory. For
simplicity’s sake, we use the uniform distribution as the start model. Let the latent
random state at time step t 2 {1, . . . ,T} be denoted by xt 2Q. Then, the start model
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is
p (x1)=

1
|Q| . (1.1)

The transition model, a Gibbs distribution, generates the rest of the latent an-
imal location data. Gibbs distributions, also known as the conditional exponential
model, have emerged as popular models in machine learning due to their practical
success and their theoretical elegance. These distributions are defined using fea-
tures, which in our case are functions that encode information about the spatial
properties of the environment. For example, a feature may encode the distance
between two coordinates in the latent state space, or it may encode the minimum
distance to a certain tree species. In a slightly different but related setting, it has
been shown that the maximum likelihood estimate of a Gibbs distribution is equiv-
alent to the maximum entropy distribution with various constraints imposed by the
features [6]. In our case, we adopt the Gibbs distribution as the transition model
because it provides a means to incorporate spatial features without making any in-
dependence assumptions about them, remains resilient to the extension of feature
space by irrelevant features, and generalizes discrete versions of simpler random
walk models which have previously been used to model animal movement. More
formally, let fk : Q£Q !R denote the kth feature and ∏k 2R denote the correspond-
ing weight parameter, where k 2 {1, . . . ,K}. We use ∏ as a vector representation of
feature weights. Then the transition model is

p (xt+1|xt;∏)=
exp

√

K
X

k=1
∏k fk (xt, xt+1)

!

X

x2Q
exp

√

K
X

k=1
∏k fk (xt, x)

! . (1.2)

The observation model generates the directional measurements observed by the
towers. We model the behavior of towers as a von Mises distribution, a circular ana-
logue of the normal distribution [36]. A von Mises distribution is parameterized by
µ and ∑, roughly the analogs of the mean and the variance of a normal distribution,
respectively. Intuitively, a radial bearing is sampled from a von Mises distribution,
and it is added as noise to the true bearing that points in the direction of the ani-
mal. More formally, fix a radial bearing system shared by all towers (i.e., bearing
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º
2 points north and bearing 0 points west). Let yt,n 2 [°º,º) denote the random
variable, a radial bearing, observed by tower n 2 {1, . . . , N} at time step t. This is
a noisy observation that is supposed to point in the direction of the animal. Let
zn 2 R2 denote the coordinate of tower n and define h(x, zn) 2 [°º,º) to be the true
radial bearing of the vector that points from tower n towards location x. Let µn 2R
and ∑n ∏ 0 denote the parameters of the von Mises distribution for tower n. Let
I0 denote the modified Bessel function of the first kind with order 0, which simply
acts as the normalization constant for the von Mises distribution. Finally, let µ, ∑,
and yt be the vector representations of the corresponding parameters and random
variables. Then, the observation model is

p
°

yt|xt;µ,∑
¢

=
N
Y

n=1
p

°

yt,n|xt;µn,∑n
¢

=
N
Y

n=1

exp
°

∑cos
°

yt,n °h(xt, zn)°µn
¢¢

2ºI0(∑)
.

(1.3)

The factorization occurs because of the conditional independence assumptions that
hold between the observations.

The start, transition, and observation models can be used to compute all the
marginal and conditional probability distributions of the SSM. Let y denote the
vector of all observations and let µ =

°

∏,µ,∑
¢

denote the vector of model parame-
ters. As usual, the joint probability distribution of the SSM is

p (x, y;µ)= p
°

x, y;∏,µ,∑
¢

= p (x1)
T°1
Y

t=1
p (xt+1|xt;∏)

T
Y

t=1
p

°

yt|xt;µ,∑
¢

.
(1.4)

Parameter estimation is the problem of estimating the model parameters (i.e.
µ). We choose maximum likelihood estimation (MLE) as the method of fitting model
parameters to data. We define the problem of parameter estimation as

ˆµ =
°

ˆ∏, ˆµ, ˆ∑
¢

= argmax
∏2RK ,µ2RN ,∑∏0

log p
°

y;∏,µ,∑
¢

. (1.5)

State estimation, on the other hand, is the problem of estimating values of un-
observed random variables. We choose to seek the hidden state sequence that max-
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imizes the probability conditioned on the observations and the MLE parameter
estimates. More formally, we define the problem of state estimation as

x̂= argmax
x2QT

p
°

x|y; ˆµ
¢

. (1.6)

Our intention is to use the parameter estimates of the Gibbs distribution as
an interpretable model of animal movement, and the state estimates of the latent
random variables as animal location estimates. We note that an analysis of Gibbs
weights might not conclusively explain the processes governing animal movement,
but we hope that it will be a first step in further exploration of these processes.

1.3 Algorithms

In this section, we detail the algorithms for solving the estimation problems and
analyze their time-complexity. Later in the chapter, we will see that for the type
of datasets we have, where both the cardinality of the latent state space and the
number of time steps is large, but the cardinality of the feature space is small, the
stochastic gradient algorithm is asymptotically superior to EM. The analysis in this
section will allow us to compare EM and the stochastic gradient algorithms.

1.3.1 Expectation Maximization

Algorithm 1.1 EM(µ0, maxTime)
1: i √ 0.
2: for all until elapsed time exceeds maxTime do

3: 8t 2 {1, . . . ,T}, compute log p
°

xt|y;µi¢.
4: 8t 2 {1, . . . ,T °1}, compute log p

°

xt, xt+1|y;µi¢.
5: 8n 2 {1, . . . , N}, compute

°

µi+1
n ,∑i+1

n
¢

√ argmaxµn,∑n

PT
t=1Ext|y;µi

£

log p
°

yt,n|xt;µn,∑n
¢§

.
6: ∏i+1 √ argmax∏

PT°1
t=1 Ext|y;µi [log p (xt+1|xt;∏)].

7: i √ i+1.
8: return µi.

In Algorithm 1.1, we present the adaptation of EM to our setting. Here, max-
Time denotes the maximum allowed running time and µ0 =

°

∏0,µ0,∑0¢ denotes
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the initial parameter settings. Lines 3 and 4 describe what is traditionally called
the E-step and involve computations of various conditional log-probabilities. These
log-probabilities can be computed using algorithms such as the forward-backward
algorithm. Similarly, Lines 5 and 6 describe what is traditionally called the M-step
and involve maximization of expected complete log-likelihoods. The maximization
problem in Line 5, after substitution of Equation (1.3) and some trigonometric ma-
nipulations, can be rewritten as

argmax
µn,∑n

T
X

t=1
∑n cosµnExt|y;µi

£

cos
°

yt,n °h(xt, zn)
¢§

+
T
X

t=1
∑n sinµnExt|y;µi

£

sin
°

yt,n °h(xt, zn)
¢§

°T log2ºI0 (∑n) .

In this form, it is equivalent to the problem of finding MLE estimates of von Mises
parameters from i.i.d samples, and it can be solved in closed form using techniques
from directional statistics [36]. The maximization problem in Line 6 is convex and
unconstrained, and it can be solved using numerical optimization algorithms such
as BFGS [35, 40].

EM is an iterative algorithm and it is hard to predict beforehand how many it-
erations are necessary until convergence. Here, we analyze the time-complexity of
each iteration for a direct implementation of Algorithm 1.1. When it is clear from
context, we write Q for |Q|. We also remind the reader that Q denotes the latent
state space, K denotes the number of features, and T denotes the length of the an-
imal trajectory. Almost all EM computations rely on the transition matrix, which
can be computed in O

°

Q2K
¢

. The E-step, Lines 3 and 4, consists of computation
of conditional log probabilities, which takes O

°

Q2T
¢

. The M-step, Lines 5 and 6,
consists of both iterative and non-iterative optimization algorithms for estimating
Gibbs and von Mises parameters, respectively. Optimization of von Mises parame-
ters can be computed in O (QT), whereas optimization of Gibbs parameters is itself
conducted iteratively using BFGS. However, in practice, the number of BFGS iter-
ations is small. For each BFGS iteration, it takes O

°

Q2T
¢

to evaluate the objective
function and O

°

Q2K
¢

to evaluate its gradient. Finally, we note that we suppressed
the dependence on N, the number of towers, since it is small. Overall, each EM
iteration takes O

°

Q2 (K +T)
¢

.
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For solving the problem of state estimation, Equation (1.6), the Viterbi algo-
rithm may be used. Viterbi is not iterative and it only needs to be executed once.
Once the transition matrix is computed in O

°

Q2K
¢

, the most likely path is com-
puted in O

°

Q2T
¢

, yielding, like EM, a total running time of O
°

Q2 (K +T)
¢

.
An important factor in determining both computational efficiency and statis-

tical accuracy is the resolution of the grid used to construct Q, the latent state
space. As the diagonal distance between corners of each grid cell in Q gets shorter,
the latent state space representation becomes more accurate1 linearly, whereas the
cardinality of the latent state space increases quadratically. Thus, an increase in
statistical accuracy at a linear rate is offset by an increase in computational com-
plexity at a quartic rate, since EM and Viterbi themselves have time-complexity
quadratic in the cardinality of the latent state space. This trade-off leads to a rapid
increase in the running time of these algorithms in exchange for small gains in
statistical accuracy.

1.3.2 Stochastic Gradient

In this subsection, we propose a stochastic gradient alternative to EM, which under
certain conditions, is asymptotically superior to EM. The algorithm is an optimiza-
tion method that can be used when one has access to a noisy approximation of the
gradient of the objective function [51]. Younes [58] used it to estimate parameters
of partially observed Markov Random Fields. Delyon et al. [13] proved convergence
results for a family of stochastic approximations to EM, including the stochastic
gradient algorithm of the form depicted in Algorithm 1.2. In the rest of the subsec-
tion, we present our implementation of the stochastic gradient algorithm, analyze
its time-complexity and compare it to that of EM, and detail how our implementa-
tion differs from other implementations.

The algorithm is presented formally as Algorithm 1.2. Here, µ0 denotes the
initial parameter settings, maxTime denotes the maximum allowed running time,
and numBurn denotes the number of Markov Chain Monte Carlo (MCMC) itera-
tions executed before a sample obtained through Gibbs sampling is accepted. The

1One measure of accuracy is the diagonal distance between the corners of a grid cell. In the worst-
case scenario, a larger grid cell would yield a higher absolute error between the location estimate
and the true location even when the true location is estimated by the closest cell midpoint.
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Algorithm 1.2 SG(µ0, numBurn, maxTime)
1: i √ 0.
2: for all until elapsed time exceeds maxTime do

3: Sample x

i ª p
°

.|y;µi¢ using randomized Gibbs sampling with a burn-in pe-
riod of numBurn.

4: µi+1 √ µi +∞irL
x

i
°

µi¢, where ∞i is chosen to satisfy Wolfe conditions with
respect to L

x

i
°

µi¢.
5: i √ i+1.
6: return µi.

log-likelihood of the complete data, denoted L, is defined as

L
x

(µ)= L
x

°

∏,µ,∑
¢

= log p
°

x,y;∏,µ,∑
¢

. (1.7)

In Line 3, latent random variables are sampled from the conditional distribution
using Gibbs sampling, and in line 4, model parameters are updated in the direc-
tion of the gradient. We note that the algorithm is a stochastic gradient algorithm
because the gradient of the log-likelihood of the complete data, Equation (1.7), is a
noisy approximation of the gradient of the objective function, Equation (1.5).

The main difference between our implementation of the stochastic gradient al-
gorithm and previous implementations is the choice of the learning rate ∞. Com-
mon implementations of the stochastic gradient algorithm use a decreasing learn-
ing rate sequence that guarantees the convergence of the algorithm to a stationary
point [13]. However, in practice, the choice of the constant factor associated with
such sequences significantly influences the speed of convergence and it is a diffi-
cult task to identify the optimal factor. We tune the learning rate automatically by
choosing one that satisfies the Wolfe conditions. These are line search conditions
that guarantee the convergence of gradient updates to an optimum in determinis-
tic convex optimization settings [40], but in our case, we use them in a stochastic
optimization setting. In practice, parameters that satisfy these conditions can be
found by providing the objective function and its gradient to line search methods.
Even though we lack a proof of convergence, we have observed informally that our
criterion for selecting the learning rates ensures better performance than manually
choosing learning rates that satisfy the customary assumptions. Furthermore, our
approach provides an automated way to set the learning rate based on the dataset.
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We conclude the subsection with an analysis of the time complexity of our im-
plementation of Algorithm 1.2. Line 3 takes O (Q (B+V K)), where B is the burn-in
period and V is the number of unique states visited during sampling. In order to
achieve this complexity, we compute the transition probabilities only for the sam-
pled states, and use memoization to store and recall them. Line 4 is conducted
iteratively, due to the line search that involves finding the right learning rate, but
number of iterations is very small in practice. Computing the objective function
takes O (QV K +T), and computing the gradient takes O (K (QV +T)).

In conclusion, the choice between EM and the stochastic gradient algorithm
depends on the relative size of the latent state space, the feature space, and the
number of time steps; however, in our problem, where both the cardinality of the
latent state space and the number of time steps is large, but the cardinality of the
feature space is small, the stochastic gradient algorithm is asymptotically superior.

An asymptotic comparison of each iteration does not suffice to determine which
algorithm to use; thus in the next subsection, we perform empirical tests that com-
pare these algorithms with respect to a variety of performance measures. Also, we
note that both algorithms may be optimized such that only state transitions to a
small neighborhood are taken into account in the computations. This would reduce
time-complexity from O

°

Q2¢ to O (QR), where R is the cardinality of the largest
neighborhood. Our implementation of all discussed algorithms take advantage of
this optimization.

1.4 Experiments

In this section, we demonstrate our model on both synthetic and real datasets.
First, we generate synthetic datasets to evaluate our model in a setting where true
feature weights are known. We also use the synthetic datasets to compare the
performance of the EM and the stochastic gradient algorithms. Then we use the
real datasets to compare our model with LOAS, the most ubiquitous radio telemetry
software package used in ecology.
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1.4.1 Synthetic Datasets

In order to simulate a real-world application as closely as possible, we created a
virtual island that has approximately the same dimensions and the same tower
locations as the Barro Colorado Island. We partitioned the virtual island into 3654
grid cells (latent states), where each grid cell is 100£ 100 meters square. Then
we created 10 different animal movement models (transition models). Each animal
movement model consisted of 5 features whose function values were generated uni-
formly at random from [0,1), and each feature’s weight was generated uniformly at
random from [°10,10]. For each animal movement model, we generated an animal
path of length 1000. In order to be as realistic as possible, we constrained the ani-
mal to move at most 500 meters at each time step and normalized the probabilities
of the animal movement model accordingly. We also used the same constraint dur-
ing the parameter estimation. As for the von Mises parameters of the towers, we
set each µ to 0 and ∑ to 15, which approximates a normal distribution with a stan-
dard deviation of 15 degrees. For each of the 10 animal paths, we generated the
corresponding noisy bearings, and together with the corresponding features (but
without the feature weights), provided them as input to the parameter estimation
algorithms.

In the first batch of experiments, we compared the performance of the stochastic
gradient algorithm and the EM algorithm. For both algorithms, we set their initial
Gibbs weights to 0, which corresponds to a uniform transition model, and their ini-
tial ∑ parameters to 50. For the stochastic gradient algorithm, we used a burn-in
period of 100,000. We executed the algorithms on each dataset for 10 hours. To
evaluate their performance, we measured the arithmetic mean error of the loca-
tion estimates, the Euclidean distance between the learned weights and the true
weights, and the log-likelihood of the observed bearings. We used the Euclidean
distance between the weights as a measure of the interpretability of the model,
where the closer weights were considered more interpretable.

As suggested by the asymptotic analysis, the stochastic gradient algorithm ex-
ecuted many more iterations than EM, and outperformed EM with respect to both
the arithmetic mean error of the location estimates and the Euclidean distance be-
tween the learned weights and the true weights. The stochastic gradient algorithm
also attained a higher log-likelihood than EM. We display the results, averaged
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Figure 1.1: A comparison of the performance of EM and the stochastic gradient algorithms. During
10 hours, EM had an average of 10 iterations, whereas stochastic gradient had an average of 500
iterations. The left plot reports the Euclidean distance between the learned weights and the true
weights, and the right plot reports the average mean error of the location estimates. Stochastic
gradient outperforms EM in both cases.

over the 10 datasets, in Figure 1.1.
In the second batch of experiments, we compared the performance of our ani-

mal movement model with a discrete version of the animal movement model used
by Anderson-Sprecher [1]. By doing so, we both wanted to demonstrate how our
model can generalize previous animal movement models and we wanted to observe
whether having a richer model leads to an improvement in the accuracy of location
estimates. The animal movement model used by Anderson-Sprecher is an isotropic
bivariate Gaussian random walk which was trained using an extended Kalman
filter-smoother. His model is defined as

p
°

xt+1|xt;æ2¢= 1
2ºæ2 exp

µ

°kxt+1 ° xtk2

2æ2

∂

. (1.8)

We can represent the same model approximately as a Gibbs distribution using the
single distance-based feature fdist =°kxt+1°xtk2

2 . Similar to the first batch of exper-
iments, we executed two copies of the stochastic gradient algorithm on the same
datasets; one copy used the features that generated the datasets and the other
copy used the single feature that represents the bivariate Gaussian random walk.
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Figure 1.2: Predictive performance of using a richer feature-based (Environment) model versus
using a simpler random walk (Kalman) model. The results imply that, if the animal indeed moves
around based on environmental features, a model that incorporates such features does yield better
location estimates than a simpler random walk model.

The richer model outperformed the Gaussian random walk model with respect to
the accuracy of the location estimates. We display the results of these experiments,
averaged over 10 datasets, in Figure 1.2.

1.4.2 Real Datasets

We applied our model to the radio telemetry data collected from two sloths, named
Chispa and Wendi, that live on the Barro Colorado Island. These sloths were one of
the few animals on the island whose true locations were labeled every few days by
human researchers via GPS devices. Thus, we were able to use the radio telemetry
data to train our algorithms and the GPS data to test them.

The radio telemetry data was collected every 4 minutes for 10 days, yielding
approximately 3600 time points. Both datasets had considerable noise in the bear-
ing measurements. In order to apply our model, we discretized the island into 1200
grid cells, each of size 50£50 meters square. As features, we used both the distance-
based feature that encodes a bivariate random walk, Equation (1.8), and tree-based
features that encode the change in the population density of various tree species
across grid cells. In particular, the model included 18 features: 1 distance-based
feature and 17 tree-based features. Each of the 17 tree-based features corresponded
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Figure 1.3: Arithmetic mean errors of SSM and LOAS on the two animal datasets. cH and wH
represent the performance of the SSM; cL and wL represent the performance of LOAS. The initial
letters "c" and "w" refer to the Chispa and Wendi datasets, respectively.

to a different tree species and they were normalized to have values in [°1,1]. We
initialized the Gibbs weights to 0, the µ parameters to 0, and the ∑ parameters to
10. We executed 10 different instances of the stochastic gradient algorithm, each
using a different random seed, and averaged the results. As a baseline comparison,
we used LOAS, which is the most popular radio telemetry software package used
in ecology [31].

In Figure 1.3, we display the distance error obtained by SSM and LOAS on the
two datasets. For both datasets, SSM outperformed LOAS. In Figure 1.4, we show
how the feature weights evolved while training on the Wendi dataset. Our model
successfully learned a diminishing movement variance for the sloth, represented
in the figure as the growing weight associated with the distance-based feature. It
also identified a small portion of the tree species that the sloth seems to have a
preference for. In Figure 1.5, we display the true locations, SSM estimates, and the
LOAS estimates obtained on the Wendi and Chispa datasets. SSM estimates are
clustered much more closely to the true locations than the LOAS estimates.

We also generalized our movement model features to be temporally-dependent.
In particular, we partitioned each day into different time zones, and for each such
zone, we allowed the animals to move according to a different movement model.
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Figure 1.4: The evolution of the transition weights for the Wendi dataset. We only plotted the
weights that exceeded the 0.5 threshold. "D" and "T" denote the distance-based and tree-based
features, respectively.

The changes in the daily activity of the sloths have already been studied by field
biologists; so for our experiments, we set the time zones, "day" and "night", based
on biologists’ feedback.

In our last experiment, we were interested in evaluating whether feature weights
converge to meaningful values, whether they are interpretable, and how differ-
ent types of features interact with each other. For this purpose, we created an
artificial tree type, where for each of the very few locations GPS data was avail-
able for Wendi, we placed a virtual tree. We defined this tree-feature formally
as ftree =°ktree_dist(xt+1)°tree_dist(xt)k2

2 , where tree_dist (x) is the Euclidean distance
between x and the closest tree of that type. By defining the tree-based feature
this way, we set it to the "same" unit as the distance-based feature associated with
Equation (1.8), allowing the feature weights to be numerically comparable. After
normalizing all feature values to be within [°1,1], the weights converged to 0.704
for distance-based feature at night and 0.316 during day; °1.279 for tree-based
feature at night and °1.312 during day. As expected, interpreting distance-based
weights indicate that Wendi moves more during day than night and that the pos-
itive magnitude of these weights indicate that the animal is more likely to stay
in place in succeeding time steps. Also, tree-based weights correctly indicate that
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Figure 1.5: Plots of the true locations, SSM estimates, and LOAS estimates on the two animal
datasets. SSM estimates are based on the last stochastic gradient iteration. Top plot displays the
results for the Wendi dataset and the bottom plot displays the results for the Chispa dataset.
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Wendi has a strong preference for certain neighborhoods on the map (i.e. the true
locations), and that the strength of these preferences are indifferent to the time
zone.

1.5 Discussion

In this chapter, we presented an SSM approach to locate radio-tagged animals and
learn their movement patterns. We presented a model that incorporates both ge-
ographical and non-geographical spatial features to improve animal location esti-
mates and provide researchers an interpretable model that enunciates the relation-
ship between the animal and its environment. We showed that the model general-
izes discrete versions of random walk models and demonstrated empirically that a
richer model improves animal location estimates. We also provided a fast parame-
ter estimation algorithm, the stochastic gradient algorithm, and demonstrated its
effectiveness against EM both asymptotically and empirically. Finally, we applied
our model to real datasets. Our model outperformed LOAS, the most popular radio
telemetry software package in ecology, with respect to the accuracy of the location
estimates. Our model also hypothesized that the sloth has a relatively strong pref-
erence for certain types of trees. We are currently working on applying our model
to other telemetry datasets collected at the Barro Colorado Island.
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Chapter 2

Collaborative Ranking of Local

Preferences

2.1 Background

Since the early days of the Netflix Prize competition, matrix factorization (MF) [30]
has become a popular method for modeling users’ preferences over a set of items.
MF achieves state-of-the-art performance on very large-scale datasets, such as the
Netflix dataset [4], which comprises more than one hundred million ratings. MF
also does not require user and item features [29], making it particularly useful for
practitioners, as they can easily apply it to new domains without designing domain-
specific features.

Most MF methods optimize root-mean-square error (RMSE) [53][46][47], largely
because the winner of the Netflix Prize was determined by it. However, for many
applications of collaborative filtering, RMSE is inappropriate because actual per-
formance is based on predicting a rank rather than a rating. For example, when
choosing which sci-fi movie to watch, a user might wonder how Star Trek ranks
against Serenity, and predicting 3.8 for Star Trek and 4.5 for Serenity is relevant
only in so far as helping the user infer a relative ranking.

As a remedy, researchers have devised various algorithms for collaborative rank-
ing. Weimer et al. [54] proposed CofiRank, which is an MF method that optimizes
ranking measures, such as normalized discounted cumulative gain (NDCG). Rendle
et al. [44] analyzed the collaborative ranking problem from a Bayesian perspective

23



and provided a meta-optimization criterion called Bayesian Personalized Ranking
(BPR), which when coupled with MF, reduces into a differentiable version of Cofi-
Rank’s objective. Balakrishnan and Chopra [3] used a two-stage model to rank; the
first stage learns the latent factors via Probabilistic Matrix Factorization (PMF)
[46], and the second stage processes these factors as features using supervised re-
gression and ranking algorithms.

Existing collaborative ranking algorithms, including CofiRank and BPR, re-
quire users’ preferences to be totally ordered, but there are many tasks where this
is too restrictive. For example, for a movie recommendation task, when a user
browses a small list of sci-fi titles and eventually chooses one, she prefers the cho-
sen movie over the remaining sci-fi movies in that list, but she does not necessarily
prefer the chosen movie over all other movies. Similarly, for a venue recommenda-
tion task, when a user considers nearby restaurants and settles on one, she demon-
strates a local preference among a small set of nearby restaurants, rather than a
global preference between the chosen restaurant and all other restaurants.

We are interested in an algorithm that not only learns from local preferences
encountered during training, but also is evaluated according to the local prefer-
ences it predicts during deployment. For example, for a venue recommendation
task, the user would query the recommendation system when she is at a particular
neighborhood, and the system would return a local, not global, ranking over nearby
venues. Thus, a successful recommendation system does not just use local prefer-
ences it observes during training to piece together a global ranking; what the user
ultimately cares about are local rankings themselves.

To tackle these issues, we introduce a matrix factorization framework called
Collaborative Local Ranking (CLR). In Section 2.2, we formally set up the problem,
and in Section 2.3, we prove a bound on its generalization error using low-rank
matrices as hypotheses. In Section 2.4, we describe the CLR objective and explore
its relationship with other learning methods. In Section 2.5, we derive our algo-
rithm for training CLR, and analyze its correctness and running time. We present
empirical results on a venue recommendation dataset in Section 2.6 and conclude
in Section 2.7.

The research described in this chapter is currently under submission and it is
joint work with David Rosenberg, Robert Schapire, and Tony Jebara.
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2.2 Problem Formulation

In this section, we formally set up the problem by describing our assumptions about
the data, the hypothesis space, and the loss function. We assume that data is gen-
erated from a sample space X , and each data point consists of a user, a candidate
set of items, a local time, and a single item that the user prefers over the remaining
candidates (i.e. the label). More formally, let U = {1, . . . ,m} be the set of users, let
V = {1, . . . ,n} be the set of items, and let T = {1, . . . ,T} indicate the local time. Then,
the sample space is defined as

X = {(u,C, i, t) | u 2U ,C µ V , i 2 C, t 2T } . (2.1)

Given a training dataset, the learning algorithm’s goal is to choose a hypothesis
g : Z3 ! R, which would map a user u, item i, and time index t to a scalar value.
Once the training is complete and the hypothesis is deployed, the recommendation
system may be queried with a user u, candidate set C, and local time. In return,
the hypothesis assigns a scalar value to each candidate item and induces a ranking
over the candidate set, and the higher the value of an item, the higher its rank.
For example, in case of venue recommendation, the user sends the system her geo-
graphical coordinates, the system identifies the nearby venues, forms the candidate
set, applies the hypothesis, and ranks the candidate venues.

The performance of the recommendation system depends on how high it ranks
the item that the user will ultimately choose. More formally, let P [·] denote proba-
bility, let Ci be the set C excluding element i, and let c Uª C mean that c is sampled
uniformly from C. Then, the local ranking loss associated with hypothesis g is

Lg (u,C, i, t)= P
c UªCi

[g (u, i, t)° g (u, c, t)∑ 0]. (2.2)

Intuitively, if the highest scalar value is assigned to the correct item i, there is no
loss. Otherwise, the loss is proportional to the number of items in the candidate set
that are ranked higher than the correct item.

To simplify the discussion, for most of the paper, we will assume that the sample
space, hypotheses, and loss functions all exclude references to local time. We will
revisit this issue in Section 2.4.
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2.3 A Bound on the Generalization Error

Our ultimate goal is to devise algorithms that minimize the generalization error of
collaborative ranking. In this section, we focus specifically on deriving a bound on
the generalization error, which in turn will influence our algorithmic design.

We assume that the hypothesis class is based on the set of low-rank matri-
ces. Given a low-rank matrix M, let gM 2 F be the associated hypothesis, where
gM (u, i) = Mu,i. Throughout the paper, we abuse notation and use gM and M in-
terchangeably. We assume that data is generated with respect to D, which is an
unknown probability distribution over the sample space X , and we let E denote
expectation. Then, the generalization error of hypothesis M is E

(u,C,i)ªD
LM (u,C, i),

which is the quantity we bound below.
We will derive the generalization bound in two steps. In the first step, we will

bound the empirical Rademacher complexity of our loss class, defined below, with
respect to samples that contain exactly 2 candidates, and in the second step, we
will prove the generalization bound with a reduction to the previous step.

Lemma 2.1. Let m be the number of users and let n be the number of items. Define
Lr = {LM | M 2Rm£n has rank at most r} as the class of loss functions associated
with low-rank matrices. Assume that S2 µ X is a set of d samples, where each
sample contains exactly 2 candidate items; i.e. if (u,C, i) 2 S2, then |C| = 2. Let
RS2 (Lr) denote the Rademacher complexity of Lr with respect to S2. Then,

RS2 (Lr)∑

v

u

u

t

2r (m+n) ln
≥

16emn2

r(m+n)

¥

d
.

Proof. Because each sample in S2 contains exactly 2 candidates, any hypothesis
LM 2Lr applied to a sample in S2 outputs either 0 or 1. Thus, the set of dichotomies
that are realized by Lr on S2, called ¶Lr (S2), is well-defined. Using Equation (6)

from Boucheron et al. [7], we know that RS2 (Lr) ∑
q

2ln|¶Lr (S2)|
d . Let X2 µ X be

the set of all samples that contain exactly 2 candidates,
Ø

Ø¶Lr (S2)
Ø

Ø ∑
Ø

Ø¶Lr (X2)
Ø

Ø, so
it suffices to bound

Ø

Ø¶Lr (X2)
Ø

Ø.
We bound

Ø

Ø¶Lr (X2)
Ø

Ø by counting the sign configurations of polynomials using
proof techniques that are influenced by Srebro et al. [52]. Let (u, {i, j} , i) 2 X2 be
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a sample and let M be a hypothesis matrix. Because M has rank at most r, it
can be written as M = UV T , where U 2 Rm£r and V 2 Rn£r. Let Ç·É denote an
indicator function that is 1 if and only if its argument is true. Then, the loss on
the sample can also be rewritten as LM (u, {i, j} , i)= ÇMu,i °Mu, j ∑ 0É= Ç

°

UV T¢

u,i °
°

UV T¢

u, j ∑ 0É= Ç
r
P

a=1
Uu,a

°

Vi,a °Vj,a
¢

∑ 0É. Since cardinality of X2 is at most 2m
°n

2
¢

∑

mn2, putting it all together, it follows that
Ø

Ø¶Lr (X2)
Ø

Ø is bounded by the number of
sign configurations of mn2 polynomials, each of degree at most 2, over r (m+n)
variables. Applying Corollary 3 from Srebro et al. [52], we obtain

Ø

Ø¶Lr (X2)
Ø

Ø ∑
≥

16emn2

r(m+n)

¥r(m+n)
. Taking logarithms and making basic substitutions yield the desired

result.

We proceed to proving the more general result via a reduction to Lemma 2.1.

Theorem 2.2. Let m be the number of users and let n be the number of items. As-
sume that S consists of d independently and identically distributed samples chosen
from X with respect to a probability distribution D. Let LM be the loss function
associated with a matrix M, as defined in Equation 2.2. Then, with probability at
least 1°±, for any matrix M 2Rm£n with rank at most r,

E
(u,C,i)ªD

LM (u,C, i)∑ E
(u,C,i)UªS

LM (u,C, i)

+2

s

2r (m+n) ln
°16emn

r
¢

d
+

s

2ln
°2
±

¢

d
. (2.3)

Proof. We will manipulate the definition of Rademacher complexity [7] in order to
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use the bound given in Lemma 2.1:

RS (Lr) .= E
æ

"

sup
LM2Lr

√

1
d

d
X

a=1
æaLM (ua,Ca, ia)

!#

(definition of RS (Lr))

= E
æ

"

sup
LM2Lr

√

1
d

d
X

a=1
æa E

ja
Uª(Ca\{ia})

LM (ua, {ia, ja} , ia)

!#

(definition of LM)

= E
æ

"

sup
LM2Lr

√

E
j1,..., jd

1
d

d
X

a=1
æaLM (ua, {ia, ja} , ia)

!#

(linearity of expectation)

∑ E
æ

"

E
j1,..., jd

√

sup
LM2Lr

1
d

d
X

a=1
æaLM (ua, {ia, ja} , ia)

!#

(sup(E)∑ E (sup))

= E
j1,..., jd

"

E
æ

√

sup
LM2Lr

1
d

d
X

a=1
æaLM (ua, {ia, ja} , ia)

!#

(reversing expectation order)

= E
j1,..., jd

£

RS2 (Lr)
§ °

definition of RS2 (Lr)
¢

∑

v

u

u

t

2r (m+n) ln
≥

16emn2

r(m+n)

¥

d
(by Lemma 2.1)

Plugging the bound to Theorem 3.2 in Boucheron et al. [7] proves the theorem.

Srebro et al. [52] used covering numbers to prove a generalization error bound
for collaborative binary classification, which is matrix factorization framework where
the matrix entries are binary and the loss function is 0-1. Even though their learn-
ing setting is different from ours, we can still compare our bound in Theorem 2.2
with their bound, and it can be seen that they match up to logarithmic factors.
Thus, collaborative local ranking maintains the same generalization error as col-
laborative binary classification in exchange for a small increase in sample size.

We can improve the tightness of our generalization error bound by restricting
the sample space X . In our proof of Lemma 2.1, we loosely bounded the cardinality
of the sample space with |X2| ∑ mn2, but many collaborative ranking tasks have
additional structure which lead to better bounds. For example, in case of venue
recommendation, X2 is restricted because two venues are only assigned to the same
candidate set if they are near each other. If we assume that every venue has at
most b nearby venues, then |X2|∑ mnb, and the n in the logarithm of Equation 2.3
gets replaced by a small constant. Thus, by making additional assumptions about
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the structure of the sample space, the generalization error bound in Theorem 2.2
becomes asymptotically equivalent to the bound provided in [52], even though the
latter bound was derived for the simpler collaborative classification setting.

2.4 Collaborative Local Ranking

In this section, we describe CLR by formulating its objective function, which we jus-
tify using the generalization error bound derived above. We also make connections
between CLR and other learning methods, such as maximum-margin matrix fac-
torization (MMMF) [45] and ranking support vector machine (ranking SVM) [24].

Given the generalization error bound in Theorem 2.2, a reasonable objective is
to minimize the empirical local ranking loss, which is the first term on the right
hand side of Equation 2.3. However, this function is discontinuous and difficult
to minimize with respect to M, so we propose minimizing a more tractable upper
bound instead. Let h (x)=max(0,1° x) be the hinge function, let M be the hypoth-
esis matrix with rank at most r, and let M =UV T , where U 2 Rm£r and V 2 Rn£r.
Then, we can bound the empirical local ranking loss as

E
(u,C,i)UªS

LM (u,C, i)=
1
|S|

X

(u,C,i)2S
LM (u,C, i)

= 1
|S|

X

(u,C,i)2S
P

c UªCi

£

Mu,i °Mu,c ∑ 0
§

= 1
|S|

X

(u,C,i)2S
E

c UªCi
ÇMu,i °Mu,c ∑ 0É

= 1
|S|

X

(u,C,i)2S

1
Ø

ØCi
Ø

Ø

X

c2Ci
Ç
≥

UV T
¥

u,i
°

≥

UV T
¥

u,c
∑ 0É

∑ 1
|S|

X

(u,C,i)2S

1
Ø

ØCi
Ø

Ø

X

c2Ci
h

µ

≥

UV T
¥

u,i
°

≥

UV T
¥

u,c

∂

. (2.4)

The resulting upper bound is not necessarily convex with respect to U and V jointly,
but it is convex with respect to U if V is fixed, and vice versa.

We use trace norm regularization, in addition to the low-rank constraint, to fur-
ther restrict the hypothesis class. Let k·kT denote the trace norm and let k·kF denote
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the Frobenius norm, then we use the equality kMkT = min
U ,V ,M=UV T

1
2
°

kUk2
F +kVk2

F
¢

given in Lemma 6 of Mazumder et al. [37] to state the objective in its final form.

Definition 2.3 (CLR Objective). Let S be the training data. Let U 2 Rm£r and
V 2Rn£r be the factor matrices, and let ∏> 0 be the regularization parameter. The
CLR objective is

f CLR (S;U ,V )=
∏

2
°

kUk2
F +kVk2

F
¢

+ 1
|S|

X

(u,C,i)2S

1
Ø

ØCi
Ø

Ø

X

c2Ci
h

µ

≥

UV T
¥

u,i
°

≥

UV T
¥

u,c

∂

.

If ∏= 0, then the CLR objective is equivalent to minimizing the bound in Equa-
tion 2.4. If ∏ 6= 0, then it can be shown that the equivalence still holds, but un-
der the constraint that matrices have bounded trace norm in addition to having
bounded rank. Even though minimizing Equation 2.4 is more directly justified by
our generalization bound, we use the CLR objective instead, which is more general,
to allow additional regularization. Note that the resulting hypothesis still satisfies
the assumptions of Theorem 2.2. Rank-truncated trace norms have been used as
regularizers in other collaborative learning settings, such as by Foygel et al. [18]
and by Rennie and Srebro [45], and have been demonstrated to work well.

We note that the CLR and the ranking SVM [24] objectives are closely related.
If V is fixed and we only need to minimize U , then each row of V acts as a feature
vector for the corresponding item, each row of U acts as a separate linear predictor,
and the CLR objective decomposes into solving simultaneous ranking SVM prob-
lems. In particular, let Su = {(a,C, i) 2 S | a = u} be the examples that correspond
to user u, let Uu denote row u of U , and let f rSVM denote the objective function of
ranking SVM, then

f CLR (S;U ,V )=
∏

2
kUk2

F + 1
|S|

X

(u,C,i)2S

1
Ø

ØCi
Ø

Ø

X

c2Ci
h

µ

≥

UV T
¥

u,i
°

≥

UV T
¥

u,c

∂

=
m
X

u=1

"

∏

2
kUuk2

F + 1
|S|

X

(u,C,i)2Su

1
Ø

ØCi
Ø

Ø

X

c2Ci
h

µ

≥

UV T
¥

u,i
°

≥

UV T
¥

u,c

∂

#

=
m
X

u=1
f rSVM (Su;Uu,V ) .

This correspondence is not surprising, since in the ranking SVM setting, items
have features, the training data consists of binary orderings between items, and the
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ranking SVM objective itself is a convex upper bound on the number of misordered
pairs. Additionally, just like optimizing the CLR objective decomposes into solving
simultaneous ranking SVM objectives, optimizing the MMMF [45] objective also
decomposes into solving simultaneous binary SVM objectives, and this observation
influences how we design our algorithms in the next section.

Lastly, we extend the CLR objective to incorporate features. In the context of
venue recommendation, such features might be obtained from an external database
and indicate the venue type or the query time stamp. We assume an extended
sample space, and given a sample (u,C, i, t) 2 X , we let t denote the query time
stamp.

Definition 2.4 (CLR.F Objective). Let S be the training data. Given a sample
(u,C, i, t) 2 S, assume that Fu,i,t 2Rq denotes the corresponding feature vector. Let
U 2Rm£r and V 2Rn£r be the factor matrices, let w 2Rq be the feature coefficients,
and let ∏,∞> 0 be the regularization parameters. The CLR.F objective is

f CLR.F (S;U ,V ,w)=
∏

2
°

kUk2
F +kVk2

F
¢

+ ∞

2
kwk2

+ 1
|S|

X

(u,C,i,t)2S

1
Ø

ØCi
Ø

Ø

X

c2Ci
h

µ

≥

UV T
¥

u,i
°

≥

UV T
¥

u,c
+wT °

Fu,i,t °Fu,c,t
¢

∂

.

2.5 Algorithms

2.5.1 Derivation

In this subsection, we derive and describe our algorithm for optimizing the CLR
objective. As we noted before, the CLR objective is not necessarily jointly convex
in U and V , but it is convex in U when V is fixed and vice versa. We minimize
the CLR objective using alternating minimization, where we sequentially alternate
between solving the convex subproblems, and we solve each such subproblem using
projected stochastic subgradient descent. The pseudocode is depicted in Algorithm
2.1.

Now, we derive the projected stochastic subgradient descent algorithm for min-
imizing V while keeping U fixed. At each iteration, the algorithm approximates
the objective function based on an example selected at random, updates the weight
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Algorithm 2.1 Alternating minimization for optimizing the CLR objective.
Require: Training data S µX , regularization parameter ∏> 0, rank constraint r,

number of iterations T.
1: U1 √Sample matrix uniformly at random from

h

° 1p
∏mr

, 1p
∏mr

im£r
.

2: V1 √Sample matrix uniformly at random from
h

° 1p
∏nr

, 1p
∏nr

in£r
.

3: for all t from 1 to T °1 do

4: Ut+1 √ argmin
U

f CLR (S;U ,Vt)

5: Vt+1 √ argmin
V

f CLR (S;Ut+1,V )

6: return UT ,VT .

vector using the approximate subgradient, and projects the weights onto a bounded
ball. Let (u,C, i) 2 S be an example, then the corresponding approximate objective
function is

f CLR ((u,C, i) ;U ,V )=
∏

2
kVk2

F + 1
Ø

ØCi
Ø

Ø

X

c2Ci
h

µ

≥

UV T
¥

u,i
°

≥

UV T
¥

u,c

∂

.

We introduce various matrix notation to help us define the approximate subgradi-
ents. Given a matrix M, let Mk,· denote row k of M. Define the matrix M̂p,q,z, for
p 6= q, as

M̂p,q,z
s,· =

8

>

>

>

>

<

>

>

>

>

:

Mz,· for s = p,

°Mz,· for s = q,

0 otherwise,

(2.5)

and define the matrix M̌p,q,z
s,· as

M̌p,q,z
s,· =

8

<

:

Mp,·°Mq,· for s = z,

0 otherwise.
(2.6)

Then, the subgradient of the approximate objective function with respect to V is

rV f CLR ((u,C, i) ;U ,V ) = ∏V ° 1
Ø

ØCi
Ø

Ø

X

c2Ci
Ç
≥

UV T
¥

u,i
°

≥

UV T
¥

u,c
< 1ÉÛ i,c,u. (2.7)
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Setting ¥t = 1
∏t as the learning rate at iteration t, the approximate subgradient

update becomes Vt+1 =Vt °¥trV f CLR ((u,C, i) ;U ,V ). After the update, the weights
are projected onto a ball with radius 1p

∏
. The pseudocode for optimizing both convex

subproblems is depicted in Algorithms 2.2 and 2.3. We prove the correctness of the
algorithms and bound their running time in the next subsection.

Algorithm 2.2 Projected stochastic subgradient descent for optimizing U .
Require: Factors V 2Rn£r, training data S, regularization parameter ∏, rank con-

straint r, number of iterations T.
1: U1 √ 0m£r

2: for all t from 1 to T °1 do

3: Choose (u,C, i) 2 S uniformly at random.
4: ¥t √ 1

∏t
5: C+ √

n

c 2 Ci |
°

UtV T¢

u,i °
°

UtV T¢

u,c < 1
o

6: Ut+1 √
°

1°¥t∏
¢

Ut + ¥t
|Ci|

P

c2C+
V̌ i,c,u

7: Ut+1 √min
n

1, 1p
∏kUt+1kF

o

Ut+1

8: return UT .

Algorithm 2.3 Projected stochastic subgradient descent for optimizing V .
Require: Factors U 2 Rm£r, training data S, regularization parameter ∏, rank

constraint r, number of iterations T.
1: V1 √ 0n£r

2: for all t from 1 to T °1 do

3: Choose (u,C, i) 2 S uniformly at random.
4: ¥t √ 1

∏t
5: C+ √

n

c 2 Ci |
°

UV T
t

¢

u,i °
°

UV T
t

¢

u,c < 1
o

6: Vt+1 √
°

1°¥t∏
¢

Vt + ¥t
|Ci|

P

c2C+
Û i,c,u

7: Vt+1 √min
n

1, 1p
∏kVt+1kF

o

Vt+1

8: return VT .

We conclude the subsection by commenting on the implementation details. A
naive implementation of Algorithm 2.2 would execute each iteration in time≠ (bmnr),
where b denotes the size of the largest candidate set. One can reduce the running
time of each iteration considerably by normalizing the matrix efficiently. We repre-
sent U as a triplet (W ,a,∫), where a is a scalar, U = aW , and kUkF = ∫. It can be
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verified that, using the new representation, a single iteration in both Algorithms
2.2 and 2.3 can be executed in time O (br).

2.5.2 Analysis

In this subsection, we analyze the running time and correctness of our algorithms.
In particular, we prove that projected stochastic subgradient descent converges to
the correct solution in time independent of the size of the training data. We do not
bound the total number of alternating minimization steps a priori; nevertheless,
we demonstrate that our methods are especially suitable for large datasets since
they solve each individual minimization problem efficiently.

The convex subproblems we analyze have the general form

min
X2D

f (X ;`)=min
X2D

∏

2
kXk2

F + 1
|S|

X

(u,C,i)2S
` (X ; (u,C, i)) . (2.8)

One can obtain the individual subproblems by specifying the domain D and the loss
function `. For example, in case of Algorithm 2.2, the corresponding minimization
problem is specified by

min
X2Rm£r

f (X ;`V ) where `V (X ; (u,C, i)) = 1
Ø

ØCi
Ø

Ø

X

c2Ci
h

µ

≥

XV T
¥

u,i
°

≥

XV T
¥

u,c

∂

, (2.9)

and in case of Algorithm 2.3, it is specified by

min
X2Rn£r

f (X ;`U ) where `U (X ; (u,C, i)) = 1
Ø

ØCi
Ø

Ø

X

c2Ci
h

µ

≥

U X T
¥

u,i
°

≥

U X T
¥

u,c

∂

. (2.10)

Let U? = argminU f (U ;`V ) and V? = argminV f (V ;`U ) denote the solution matri-
ces of Equations 2.9 and 2.10, respectively. Also, given a general convex loss ` and
domain D, let X̄ 2 D be an ≤-accurate solution for the corresponding minimization
problem if f

°

X̄ ;`
¢

∑minX2D f (X ;`)+≤.
In the remainder of this subsection, we show that Algorithms 2.2 and 2.3 are

adaptations of the Pegasos [49] algorithm to the CLR setting. Then, we prove cer-
tain properties that are prerequisites for obtaining Pegasos’s performance guaran-
tees. In particular, we show that the approximate subgradients computed by Algo-
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rithms 2.2 and 2.3 are bounded and the loss functions associated with Equations
2.9 and 2.10 are convex. In the end, we plug these properties into a theorem proved
by Shwartz et al. [49] to show that our algorithms reach an ≤-accurate solution with
respect to their corresponding minimization problems in Õ

≥

1
∏2≤

¥

iterations.
Aside from having different loss functions, another difference between our col-

laborative ranking setting and the supervised learning setting of Shalev-Shwartz
et al. Shwartz et al. [49] is the treatment of features. In the supervised learning
setting, features are constant, but in our setting, the factor matrices U and V act
like features, and their values vary from one step of alternating minimization to
the next. For example, when optimizing U , the factor matrix V acts like a feature
matrix, and vice versa, and both matrices change in value during subsequent steps
of alternating minimization. As a result, feature values that are treated as con-
stants in the supervised setting cannot be treated as constants in the collaborative
setting. We treat these issues in our proofs as well.

Lemma 2.5.

∞

∞U?
∞

∞∑ 1p
∏

and
∞

∞V?
∞

∞∑ 1p
∏

.

Proof. One can obtain the bounds on the norms of the optimal solutions by exam-
ining the dual form of the optimization problems and applying the strong duality
theorem. Equations 2.9 and 2.10 can both be represented as

min
v2D

1
2
kvk2 +

K
X

k=1
ekh ( fk (v)) , (2.11)

where ek = 1
∏|S||Ck| is a constant, h is the hinge function, D is a Euclidean space,

and fk is a linear function. We rewrite Equation 2.11 as a constrained optimization
problem

min
v2D,ª2RK

1
2
kvk2 +

K
X

k=1
ekªk (2.12)

subject to ªk ∏ 1° fk (v) , k = 1, . . .K ,

ªk ∏ 0, k = 1, . . .K .
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The Lagrangian of this problem is

L
°

v,ª,Æ,Ø
¢

= 1
2
kvk2 +

K
X

k=1
ekªk +

K
X

k=1
Æk (1° fk (v)°ªk)°
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= 1
2
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°

ek °Æk °Øk
¢

+
K
X
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Æk (1° fk (v)) ,

and its dual function is
g

°

Æ,Ø
¢

= inf
v,ª

L
°

v,ª,Æ,Ø
¢

.

Since L
°

v,ª,Æ,Ø
¢

is convex and differentiable with respect to v and ª, the necessary
and sufficient conditions for minimizing v and ª are

rvL = 0 , v =
K
X

k=1
Ækrv fk (v) ,

rªL = 0 , e =Æ+Ø. (2.13)

We plug these conditions back into the dual function and obtain

g
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L
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. (2.14)

Since fk is a linear function, we let fk (v) =~k · v, where ~k is a constant vector, and
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rv fk (v)=~k. Then,
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Simplifying Equation 2.14 using Equation 2.15 yields
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Finally, we combine Equations 2.13 and 2.16, and obtain the dual form of Equation
2.12,

max
Æ

° 1
2

∞

∞

∞

∞

∞

K
X

k=1
Æk~k

∞

∞

∞

∞

∞

2

+
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X

k=1
Æk (2.17)

subject to 0∑Æk ∑ ek, k = 1, . . .K .

The primal problem is convex, its constraints are linear, and the domain of its
objective is open; thus, Slater’s condition holds and strong duality is obtained. Fur-
thermore, the primal problem has differentiable objective and constraint functions,
which implies that

°

v?,ª?
¢

is primal optimal and
°

Æ?,Ø?
¢

is dual optimal if and
only if these points satisfy the Karush-Kuhn-Tucker (KKT) conditions. It follows
that

v? =
K
X

k=1
Æ?k
~k. (2.18)
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Note that we defined ek = 1
∏|S||Ck| , where

K
P

k=1
ek = 1

∏ , and the constraints of the dual

problem imply 0 ∑ Æk ∑ ek; thus,
K
P

k=1
Æ?k ∑ 1

∏ . Because of strong duality, there is no

duality gap, and the primal and dual objectives are equal at the optimum,
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2 + 1
∏

)
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∞v?
∞

∞

2 ∑ 1
∏

.

This proves the lemma.

Given the bounds in Lemma 2.5, it can be verified that Algorithms 2.2 and 2.3
are adaptations of the Pegasos [49] algorithm for optimizing Equations 2.9 and
2.10, respectively. It still remains to show that Pegasos’s performance guarantees
hold in our case.

Lemma 2.6. In Algorithms 2.2 and 2.3, the approximate subgradients have norm
at most

p
∏+2

q

1
∏ .

Proof. The approximate subgradient for Algorithm 2.3 is depicted in Equation 2.7.
Due to the projection step, kVkF ∑ 1p

∏
, and it follows that k∏VkF ∑

p
∏. The term

Û i,c,u is constructed using Equation 2.5, and it can be verified that
∞

∞Û i,c,u∞

∞

F ∑
p

2kUkF ∑
q

2
∏ . Using triangle inequality, one can bound Equation 2.7 with

p
∏+

q

2
∏ . A similar argument can be made for the approximate subgradient of Algorithm

2.2, yielding the slightly higher upper bound given in the lemma statement.

We combine the lemmas to obtain the correctness and running time guarantees
for our algorithms.

Lemma 2.7. Let ∏ ∑ 1
4 , let T be the total number of iterations of Algorithm 2.2,

and let Ut denote the parameter computed by the algorithm at iteration t. Let Ū =
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t=1Ut denote the average of the parameters produced by the algorithm. Then,
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The analogous result holds for Algorithm 2.3 as well.

Proof. First, for each loss function `V and `U , variables are linearly combined,
composed with the convex hinge function, and then averaged. All these operations
preserve convexity, hence both loss functions are convex. Second, we have argued
above that Algorithms 2.2 and 2.3 are adaptations of the Pegasos [49] algorithm for
optimizing Equations 2.9 and 2.10, respectively. Third, in Lemma 2.6, we proved a
bound on the approximate subgradients of both algorithms. Plugging these three
results into Corollary 2 in Shwartz et al. [49] yields the statement of the theorem.

The theorem below gives a bound in terms of individual parameters rather than
average parameters.

Theorem 2.8. Assume that the conditions and the bound in Lemma 2.7 hold. Let
t be an iteration index selected uniformly at random from {1, . . . ,T}. Then, with
probability at least 1

2 ,

f (Ut;`V )∑ f
°

U?;`V
¢

+
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The analogous result holds for Algorithm 2.3 as well.

Proof. The result follows directly from combining Lemma 2.7 with Lemma 3 in
Shwartz et al. [49].

Thus, with high probability, our algorithms reach an ≤-accurate solution in
Õ

≥

1
∏2≤

¥

iterations. Since we argued in Subsection 2.5.1 that the running time of
each stochastic update is O (br), it follows that a complete run of projected stochas-
tic subgradient descent takes Õ

≥

br
∏2≤

¥

time, and the running time is independent of
the size of the training data.
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2.6 Experiments

In this section, we provide an empirical analysis of the CLR framework by applying
it to a venue recommendation task. We assess CLR’s generalization and running
time performance by comparing it against CofiRank, an algorithm which is repre-
sentative of the state-of-the-art in collaborative ranking.

We created our dataset by collecting publicly available “check-ins” via the Twit-
ter and Foursquare APIs. A check-in is a virtual announcement where a user
shares her whereabouts with other people on her social network. A check-in con-
tains a user ID, a venue ID (e.g. “Shake Shack”), and a local time; optionally, it may
also contain a text (e.g. “Trying the shackburger!!”), photos, and other metadata.
We collected public check-ins that occurred in New York City during the 9 month
period ranging from January 2011 to September 2011. We filtered our dataset to
only include users who have checked in at least 5 times and venues which have
been checked into at least 5 times, yielding a total of 13750 users, 11700 venues,
and 269597 check-ins. We note that all the check-ins we collected were shared with
the entire Internet, so our dataset does not contain any private information.

At a high level, our goal is to build a venue recommendation application for
mobile platforms, where the user specifies a geographical region she is interested
in exploring, and the application returns a personalized ranking over the venues
in that region. If such an application already existed, it would have been an ideal
fit for the CLR setting for the following reasons: 1) the regions explored by the
users are generated by an unknown probability distribution; 2) when checking into
a venue, the user implicitly prefers it over the remaining venues in the explored
region; 3) the application’s goal is to provide a relevant ranking over the venues
by minimizing the local ranking loss. Even though the Foursquare dataset we col-
lected is not guaranteed to be generated under similar assumptions, we use it as a
proxy regardless, and assume that when a user checks into a venue, she is implic-
itly preferring that venue over the remaining venues in a specified radius. We note
that similar assumptions about implicit preferences have been made by Joachims
[24] in the supervised learning setting, where the author introduced ranking SVMs
to rerank search engine results using clickthrough logs.

We partition the check-ins chronologically, and place the earliest 60% of check-
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ins to train, the subsequent 20% to validation, and final 20% to test sets. Each
check-in corresponds to a tuple (u, i), where u is the user and i is the checked-
in venue. In order to apply CLR, we augment each check-in with a candidate set
C, which consists of venues within a specified distance to i, and form the CLR
sample (u,C, i). We train a variety of CLR and CofiRank models on a combined
train and validation set, determine the best performing model parameters using
the validation set, and report the performance of the chosen parameters on the
test set. The model parameters include the rank r 2 {2,5,10,20}, CofiRank regu-
larization parameter ∏ 2 {10,100,1000,10000}, and CLR regularization parameter
∏ 2 {0.01,0.001,0.0001,0.00001,0.000001}. For testing, we form queries with a user
u and a candidate set C, hide the label i, and measure the algorithms’ perfor-
mances accordingly. We vary the radius that determines the size of the candidate
set C from 50m to 300m, in 50m increments.

Figure 2.1 displays the local ranking loss of various algorithms on the held-out
test set. We compare CLR against both CofiRank and a baseline algorithm called
“Popular”, which simply outputs the most frequently checked in venue from the
candidate set. We execute CofiRank with three different loss functions: ordinal,
NDCG, and squared [55]. CofiRank performs best when coupled with the squared
loss, where it effectively mimics MMMF [45]; however, the “Popular” baseline out-
performs CofiRank. Our algorithm, CLR, outperforms all methods and achieves
the lowest local ranking loss. We note that, unlike competing methods, CLR does
not suffer an additional loss when the radius and size of its candidate set increases.

Figure 2.2 displays the recall@k performance on the held-out test set, for k =
{1,5,10}. The order of algorithms with respect to recall performance is exactly the
same as their order with respect to local ranking loss. For recall@1, the “Popu-
lar” baseline outperforms all versions of CofiRank, but as the radius of candidate
sets increase beyond 150m, the performance of CofiRank-squared matches that of
“Popular”. In contrast, CLR outperforms them all. For recall@5 and recall@10, per-
formance of CLR and “Popular” coincide up to 100m radius, but CLR outperforms
competing methods for higher radii.

We also empirically analyze the running time of CofiRank and CLR. For both
algorithms, for each radius, we choose the parameter settings which perform the
best on the validation set, and record their respective training time. We plot the
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Figure 2.1: The local ranking loss of various algorithms on the held-out test set. CofiRank performs
best when coupled with squared loss, “Popular” performs better than CofiRank, and CLR outper-
forms them all. The error bars correspond to standard error and are barely noticeable.

results using log-scale in Figure 2.3. Even though the running time of CLR has
a linear dependence on the size of the candidate sets; nevertheless, CLR trains
orders of magnitude faster than CofiRank, as suggested by our theoretical analysis
in Subsection 2.5.2.

2.7 Discussion

In this chapter, we formulated a new collaborative ranking framework, called Col-
laborative Local Ranking, which allows us to formulate a wide variety of real-world
ranking tasks in a collaborative setting. We justified CLR with a bound on its gen-
eralization error. We also derived a simple alternating minimization algorithm and
showed that each minimization step can be efficiently computed in time indepen-
dent of the size of the training data. We applied CLR to a venue recommendation
task and demonstrated that it outperforms state-of-the-art collaborative ranking
methods, such as CofiRank, both in terms of generalization performance and run-
ning time.

42



50 100 150 200 250 300
10

20

30

40

50

60

70

Radius (m)

R
e
ca

ll@
1
 (

%
)

 

 

CLR
Squared
Ordinal
NDCG
Popular

50 100 150 200 250 300

30

40

50

60

70

80

90

Radius (m)

R
e
ca

ll@
5
 (

%
)

 

 

CLR
Squared
Ordinal
NDCG
Popular

50 100 150 200 250 300

40

50

60

70

80

90

100

Radius (m)

R
e
ca

ll@
1
0
 (

%
)

 

 

CLR
Squared
Ordinal
NDCG
Popular

Figure 2.2: Recall@k of various algorithms on the held-out test set, for k = {1,5,10}. CLR outper-
forms all competing methods. The error bars correspond to standard error and are barely noticeable.
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Figure 2.3: Training time of CLR and CofiRank in log-scale. We report the results for CofiRank-
squared, which is the best performing CofiRank variant. CLR trains orders of magnitude faster
than CofiRank, even when we increase the size of the radius and candidate sets.
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Chapter 3

Collaborative Place Models

3.1 Background

During the last three years, positioning devices that measure and record our lo-
cations have become ubiquitous. The most common positioning device, the smart-
phone, is projected to be used by a billion people in the near future [11]. This surge
in positioning devices has increased the availability of location data, and provided
scientists with new research opportunities, such as building location-based recom-
mendation systems [22, 60, 61], analyzing human mobility patterns [8, 20, 50], and
modeling the spread of diseases [16].

For many location-based tasks, a fundamental problem is predicting users’ fu-
ture locations. For example, a navigation application that has access to traffic con-
ditions can warn the user about when to depart, without requiring any input from
the user, as long as the application can accurately predict the arrival time and lo-
cation of user’s next destination. Similarly, a restaurant application can provide
a list of recommended venues, even reserve them while space is still available, by
modeling the probable locations the user might visit in the evening. Predicting fu-
ture locations based on past ones is a difficult problem, and to solve it, one needs
efficient algorithms that identify the structures and routines hidden in users’ past
locations.

Complicating the problem further, in many real-world applications, location
datasets are sparse. Due to privacy considerations [56] and high energy consump-
tion of positioning hardware [41], most mobile phone users only allow applications
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to log their location when the application is active, but not when it is running in
the background. Consequently, compared to previous datasets used in location pre-
diction research, many real-world datasets have much less information available
for each user, as depicted in Figure 3.1. Even when users share very little with
their applications, they nevertheless expect these applications to infer as much as
possible; thus, there is a need for location prediction algorithms that are designed
with sparsity in mind.

There have been various studies on location prediction. Gao et al. [19] designed
a Markov model that takes temporal context into account in order to predict the
user’s location in the immediate future. Cho et al. [9] proposed a two-state mixture
of Gaussians that leverages the social relationships between users, but they limited
their model to only represent “home” and “work”. De Domenico et al. [12] presented
a location prediction algorithm that won the Nokia Mobile Data Challenge (MDC),
where the dataset consisted of tens of thousands of GPS observations, collected
every few minutes and over the span of a year. Their algorithm exploited the high
density of the location dataset, as well as the social relationships between users,
by comparing all historical trajectories that spanned a day and making a forecast
based on the similarities between such trajectories.

In addition to location prediction, there have also been studies on algorithms
that detect significant places and routines in location data. Eagle and Pentland
[14] applied eigendecomposition to the Reality Mining dataset, where all locations
were already labeled as “home” or “work”, and extracted users’ daily routines. Far-
rahi and Gatica-Perez [17] used the same dataset, but extracted the routines using
Latent Dirichlet Allocation (LDA) instead of eigendecomposition. Liao et al. [32, 33]
proposed a hierarchical conditional random field to identify activities and signifi-
cant places from the users’ GPS traces, and since their algorithm was supervised,
it required locations to be manually labeled for training.

In this chapter, we propose two unsupervised Bayesian probabilistic models for
location prediction that are designed specifically for sparse location datasets. Both
models assume that each user is characterized by a number of place clusters, whose
spatial characteristics, such as their means and covariances, are determined proba-
bilistically from the data. Similar to a mixed-membership model [15], we allow the
place clusters to be global to each user, but we restrict the user’s preferences over
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Figure 3.1: Histograms of number of observations per user for a dense and a sparse dataset. The
top plot is based on a random sample of 1395 mobile carrier users and is representative of dense
datasets used in previous work on location prediction. The bottom plot is based on a random sample
of 5007 smartphone application users and is the sparse dataset used in this chapter. On average,
the dense dataset has 21 times more observations per user than the sparse dataset.
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the clusters to be local to each weekhour. For example, our models may learn that
a user partitions her time between four places, two of which are in West Village
and midtown Manhattan, determine the spatial characteristics of these places, in-
fer that on Thursday at 7pm the user has a high likelihood of visiting West Village
and a low likelihood of visiting midtown Manhattan, and achieve these inferences
in an unsupervised manner from the observed geographic coordinates alone.

A source of difficulty is that, due to sparsity, each user has many weekhours for
which no location has been observed before. Since our goal is to construct a week-
long profile of users’ whereabouts, our models need to infer the place distributions
for the missing weekhours, which they accomplish by sharing information across
users. It is the details of how users share this information that sets the two models
apart.

Our first model, called Constrained Place Model (CPM), assumes that for each
weekhour all users have the same place distribution, even though the spatial char-
acteristics of these places remain unique to each user. For example, users Rob and
Tony may both have a work cluster, with different means and covariances, but for
any given weekhour, Rob and Tony’s probabilities of being at work would be the
same. By assuming that the place distributions are the same for all users, CPM is
able to estimate place distributions for all weekhours, even when data is sparse.

Since constraining all users to have the same place distribution may be too re-
strictive, we propose a second model called Smooth Place Model (SPM). This model
assumes that, for each user, each weekhour’s place distribution is a convex combi-
nation of component place distributions, and it is the coefficients of these convex
combinations that are shared across all users. As a result, SPM allows users to
have different place distributions for each weekhour, different number of places for
each user, as well as different spatial characteristics for each place. Despite its
flexibility, SPM accurately constructs place distributions for hours and days where
the user has not been observed before, in addition to providing state-of-the-art per-
formance in sparse location prediction.

The chapter proceeds as follows. In Section 3.2, we provide a formal description
of our models. In Section 3.3, we derive the inference algorithms. In Section 3.4,
we provide details of our experimental setup and apply our algorithms to a sparse
smartphone application dataset and a dense mobile carrier dataset. We conclude
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in Section 3.5.
The research described in this chapter is currently under submission and it is

joint work with David Rosenberg, Robert Schapire, and Tony Jebara.

3.2 Collaborative Place Models

In this section, we provide a formal description of our models, CPM and SPM,
and describe their generative process. Both models comprise a spatial component,
which represents the inferred place clusters, and a temporal component, which
represents the inferred place distributions for each weekhour. Both CPM and SPM
have the same spatial components, but they have different temporal components.
The models are depicted in Figure 3.2 using the graphical model representation.

3.2.1 Constrained Place Model (CPM)

In this subsection, we describe the temporal and spatial components of CPM, and
discuss the intuition behind some of the technical decisions we have made about
the model. The temporal component of CPM constrains all users to have the same
place distribution for a given weekhour. Let w represent an hour in a week, ranging
from 1 to W , and let k represent a place index, ranging from 1 to K . In case of CPM,
all users have exactly K places, but we will relax this requirement for SPM. Let
µw 2 RK denote a Dirichlet random variable that represents, intuitively, the users’
global place preferences at weekhour w. These preferences are used to generate
zu,w,n, the latent place assignment for user u and observation n at weekhour w.
The place assignment is in turn used to sample the observed coordinates `u,w,n

from the corresponding place cluster.
The spatial component of CPM models the K place clusters, whose means and

covariances are unique to each user. Intuitively, we expect each place cluster to
correspond to locations such as “home”, “work”, and “gym”. Given a user u and a
place index k, each place cluster is characterized by a bivariate normal distribution,
with mean ¡k

u and covariance ßk
u. The observed coordinates ` are considered to be

noisy observations sampled from these place clusters.
Our models use conjugate priors because of the computational advantages they
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Figure 3.2: Graphical model representations of CPM (top) and SPM (bottom). CPM assumes that
all users share the same place distribution. In contrast, SPM assumes that all users share the same
coefficients over the component place distributions, whose convex combination yields the final place
distribution.
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provide in Bayesian inference. Since µw is the parameter of a categorical distribu-
tion, we set its prior to a symmetric Dirichlet with concentration parameter Æ > 0
and let DirichletK (Æ) denote the K-dimensional distribution. In practice, we set Æ
to 1 and make all parameters in Dirichlet’s support equally probable, a reasonable
assumption given the lack of prior information.

We set the normal distribution’s prior to the normal-inverse-Wishart (NIW) dis-
tribution. Among its parameters, § 2 R2£2 is a positive definite scale matrix, ∫>1
indicates the degrees of freedom, and together they define the distribution over the
covariance matrix. The prior mean of the mean, µu, is customized for each user u
and is computed as the mean of the user’s historical locations. The pu

k parameter
is a function of the user and place, and it ensures that the covariance of the mean
matches the empirical covariance of the user’s past location data.

In location datasets, a user sometimes logs locations that are one-offs and are
not representative of the user’s regular location profile. To ensure that such outliers
do not affect how the model infers the user’s regular place clusters, we designate
place K as a special outlier place and set its covariance’s prior mean, as determined
by §K , to be very large. As for the covariance of regular clusters, we set the remain-
ing scale matrices, §°K , such that each coordinate of the covariance’s prior mean
has a standard deviation of 250 meters. This is a reasonable size for a place cluster,
as it is large enough to encapsulate both the potential inaccuracies of location hard-
ware and the inherent noise in the users’ locations, but small enough to ensure that
each place cluster corresponds to a single intuitive place, such as “home” or “work”.

Let N denote the normal distribution and IW denote the inverse-Wishart dis-
tribution. The generative process of CPM is described in more formal terms below.
Further technical details about the distributions we use in our model can be found
in the appendix.

1. For each weekhour w, draw a distribution over places µw ªDirichletK (Æ).

2. For each user u and each place k,

(a) Draw a place covariance ßk
u ª IW (§k,v).

(b) Draw a place mean ¡k
u ªN

≥

µu, ß
k
u

pu
k

¥

.

3. For each user u, weekhour w, and observation index n,
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(a) Draw a place assignment zu,w,n ªCategorical(µw).

(b) Draw a location `u,w,n ªN
°

¡
zu,w,n
u ,ßzu,w,n

u
¢

.

3.2.2 Smooth Place Model (SPM)

In this subsection, we turn our attention to SPM, and specify its spatial and tem-
poral components. SPM’s spatial component is essentially identical to that of CPM,
except SPM does not restrict all users to have the same number of places, whereas
CPM does. In contrast, SPM’s temporal component is quite different from that of
CPM, and that is what sets the two models apart.

SPM’s temporal component assumes that, for each user u and weekhour w,
the corresponding place distribution is a convex combination of F component place
distributions. The component place distributions are unique to each user, but the
coefficients of the convex combination are shared across all users. This way, SPM
is able to infer each user’s place distribution for weekhours where the user has not
been observed before, as well as predict each user’s future geographic coordinates
accurately despite sparsity. Furthermore, by not restricting each user to have the
same number of places or each weekhour to have the same distribution over places,
SPM allows a more realistic and flexible representation of the users’ location pro-
files.

For each user u and component index f , let µ f
u 2 RKu be a Dirichlet random

variable that represents the corresponding component place distribution, where
Ku denotes the number of places for each user u. Let ∞w 2 RF denote a Dirich-
let random variable that represents the component weights, which when combined
with the component place distributions, results in the user’s final place distribution
for weekhour w. The variable ∞w generates yu,w,n, the component assignment for
user u and observation n at weekhour w, and the component assignment gener-
ates the place assignment zu,w,n from the component place distribution µyu,w,n

u . The
place assignment is in turn used to sample the observed coordinates `u,w,n from
the corresponding place cluster.

We abuse notation and let DirichletK (·) denote a symmetric Dirichlet if its pa-
rameter is a scalar and a general Dirichlet if its parameter is a vector. The gen-
erative process of SPM is described in more formal terms below. Further technical
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details about the distributions we use in our model can be found in the appendix.

1. For each weekhour w, draw a distribution over components ∞w ªDirichletF
°

Øw
¢

.

2. For each user u and component f , draw a component place distribution µ f
u ª

DirichletKu (Æ).

3. For each user u and place k,

(a) Draw a place covariance ßk
u ª IW (§k,v).

(b) Draw a place mean ¡k
u ªN

≥

µu, ß
k
u

pu
k

¥

.

4. For each user u, weekhour w, and observation index n,

(a) Draw a component assignment yu,w,n ªCategorical(∞w).

(b) Draw a place assignment zu,w,n ªCategorical(µyu,w,n
u ).

(c) Draw a location `u,w,n ªN
°

¡
zu,w,n
u ,ßzu,w,n

u
¢

.

3.3 Inference

In this section, we derive our inference algorithm, and we present our derivation
in multiple steps. First, we use a strategy popularized by Griffiths and Steyvers
[21], and derive a collapsed Gibbs sampler to sample from the posterior distribu-
tion of the categorical random variables conditioned on the observed geographic
coordinates. Second, we derive the conditional likelihood of the posterior samples,
which we use to determine the sampler’s convergence. Third, we derive formulas
for approximating the posterior expectations of the non-categorical random vari-
ables conditioned on the posterior samples. Finally, in the last step, we combine
all the previous derivations to construct a simple algorithm for efficient posterior
inference. In later sections, we will also show how these posteriors are used to com-
pute users’ significant places, to analyze the way users partition their time across
these places, and to predict the users’ future locations.
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3.3.1 Collapsed Gibbs Sampler

Since the derivations for CPM and SPM are fairly similar, we avoid duplication
and only present the derivation for SPM. In Lemmas 3.1 and 3.2, we derive the
collapsed Gibbs sampler for variables z and y, respectively.

Given a vector x and an index k, let x°k indicate all the entries of the vector
excluding the one at index k. For Lemmas 3.1 and 3.2, assume i = (u,w,n) denotes
the index of the variable that will be sampled.

Lemma 3.1. The unnormalized probability of zi conditioned on the observed loca-
tion data and remaining categorical variables is

p
°

zi = k | yi = f , z°i, y°i,`
¢

/ tṽu
k°1

0

@`i | µ̃u
k ,
§̃

k
u
°

p̃u
k +1

¢

p̃u
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°

ṽu
k °1

¢

1

A

≥

Æ+ m̃k, f
u,·

¥

.

The parameters ṽu
k , µ̃u

k, §̃k
u, and p̃u

k are defined in the proof. t denotes the bivariate
t-distribution and m̃k, f

u,· denotes counts, both of which are defined in the appendix.

Proof. We decompose the probability into two components using Bayes’ theorem:

p
°

zi = k | yi = f , z°i, y°i,`
¢

= p
°

`i | zi = k, yi = f , z°i, y°i,`°i
¢

£
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p
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= p (`i | zi = k, z°i,`°i)

£
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¢

p
°
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¢

/ p (`i | zi = k, z°i,`°i) (3.1)

£p
°

zi = k | yi = f , z°i, y°i
¢

. (3.2)
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In the first part of the derivation, we operate on (3.1). We augment it with ¡ and ß:
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u. (3.4)

We convert (3.4) into a more tractable form. Let M̃k,·
u,· be a set of indices, which

we define in the appendix, and let `M̃k,·
u,·

denote the subset of observations whose

indices are in M̃k,·
u,·. In the derivation below, we treat all variables other than ¡k

u

and ßk
u as a constant:
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Since the normal-inverse-Wishart distribution is the conjugate prior of the multi-
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variate normal distribution, the posterior is also a normal-inverse-Wishart distri-
bution,
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whose parameters are defined as
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The posterior parameters depicted above are derived based on the conjugacy prop-
erties of Gaussian distributions, as described in Murphy [39]. We rewrite (3.1) by
combining (3.3), (3.4), and (3.5) to obtain
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where t is the bivariate t-distribution. (3.6) is derived by applying Equation 258
from Murphy [39].

Now, we move onto the second part of the derivation. We operate on (3.2) and
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augment it with µ:
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We convert (3.8) into a more tractable form. As before, let M̃·, f
u,· be a set of indices,

which we define in the appendix, and let zM̃·, f
u,·

denote the subset of place assign-

ments whose indices are in M̃·, f
u,·. In the derivation below, we treat all variables

other than µ f
u as a constant:
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where the last step follows because Dirichlet distribution is the conjugate prior of
the categorical distribution. We rewrite (3.2) by combining (3.7), (3.8), and (3.9):
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The last step follows because it is the expected value of the Dirichlet distribution.
Finally, we combine (3.1), (3.2), (3.6), and (3.10) to obtain the unnormalized

probability distribution:
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Lemma 3.2. The unnormalized probability of yi conditioned on the observed loca-
tion data and remaining categorical variables is
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where the counts m̃k, f
u,· , m̃·, f

u,·, and m̃·, f
·,w are defined in the appendix.

Proof. We decompose the probability into two components using Bayes’ theorem:

p
°

yi = f | zi = k, y°i, z°i,`
¢

= p
°

yi = f | zi = k, y°i, z°i
¢

= p
°

zi = k | yi = f , z°i, y°i
¢ p

°

yi = f | z°i, y°i
¢

p
°

zi = k | z°i, y°i
¢

/ p
°

zi = k | yi = f , z°i, y°i
¢

(3.11)

£p
°

yi = f | z°i, y°i
¢

. (3.12)

Since (3.11) is equal to (3.2), we rewrite it using (3.10)
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We operate on (3.12) and augment it with ∞:
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We convert (3.15) into a more tractable form. As before, let M̃·,·
·,w be a set of indices,

which we define in the appendix, and let yM̃·,·
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denote the subset of component as-
signments whose indices are in M̃·,·

·,w. In the derivation below, we treat all variables
other than ∞w as a constant,
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where the last step follows because Dirichlet distribution is the conjugate prior
of the categorical distribution. We rewrite (3.12) by combining (3.14), (3.15), and
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(3.16):
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Finally, we combine (3.11), (3.12), (3.13), and (3.17) to obtain the unnormalized
probability distribution:
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3.3.2 Likelihoods

In this subsection, we derive the conditional likelihoods of the posterior samples
conditioned on the observed geographical coordinates. Later in the chapter, when
we present the algorithm for posterior inference, we will use these conditional like-
lihoods to determine the algorithm’s convergence.

We present the derivations in multiple lemmas and combine them in a theorem
at the end of the subsection. Let ° denote the gamma function.

Lemma 3.3. The marginal probability of the categorical random variable y is
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where the counts m·, f
·,w are defined in the appendix.

Proof. Let ∞=
°

∞1, . . . ,∞W
¢

denote the collection of random variables for all weekhours.
Below, we will augment the marginal probability with ∞, and then factorize it based
on the conditional independence assumptions made by our model:
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Now, we substitute the probabilities in (3.18) with Dirichlet and categorical distri-
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butions, which are defined in more detail in the appendix:

p (y) =
W
Y

w=1

ˆ 0

@DirichletF
°

∞w |Øw
¢

Y

j2M·,·
·,w

Categorical
°

yj |∞w
¢

1

A d∞w

=
W
Y

w=1

ˆ √

1
B

°

Øw
¢

F
Y

f=1
∞
Øw, f °1
w, f

!√

F
Y

f=1
∞

m·, f
·,w

w, f

!

d∞w

=
W
Y

w=1

ˆ √

1
B

°

Øw
¢

F
Y

f=1
∞
Øw, f °1+m·, f

·,w
w, f

!

d∞w

=
W
Y

w=1

1
B

°

Øw
¢B

≥

Øw,1 +m·,1
·,w, . . . ,Øw,F +m·,F

·,w
¥

=
W
Y

w=1

°

√

F
P

f=1
Øw, f

!

F
Q

f=1
°

≥

Øw, f +m·, f
·,w

¥

√

F
Q

f=1
°

°

Øw, f
¢

!

°

√

F
P

f=1
Øw, f +m·, f

·,w

! .

Lemma 3.4. The conditional probability of the categorical random variable z con-
ditioned on y is
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where the counts mk, f
u,· and m·, f

u,· are defined in the appendix.

Proof. Let µ =
n

µ
f
u | u 2 {1, . . . ,U} , f 2 {1, . . . ,F}

o

denote the collection of random vari-
ables for all users and components. Below, we will augment the conditional proba-
bility with µ, and then factorize it based on the conditional independence assump-
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tions made by our model:
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Now, we substitute the probabilities in (3.19) with Dirichlet and categorical distri-
butions, which are defined in more detail in the appendix:
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For our final derivation, let °2 denote the bivariate gamma function, and let |·|
denote the determinant.

Lemma 3.5. The conditional probability of the observed locations ` conditioned on
z and y is
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The parameters vu
k , §k

u, and p̂u
k are defined in the proof, and the counts mk,·

u,· are
defined in the appendix.

Proof. We will factorize the probability using the conditional independence assump-
tions made by the model, and then simplify the resulting probabilities by integrat-
ing out the means and covariances associated with the place clusters:
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We apply Equation 266 from Murphy [39], which describes the conjugacy properties
of Gaussian distributions, to reformulate (3.20) into its final form:
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The definitions for vu
k , §k

u, and p̂u
k are provided in (3.5).

Finally, we combine Lemmas 3.3, 3.4, and 3.5 to provide the log-likelihood of the
samples z and y conditioned on the observations `.

Theorem 3.6. The log-likelihood of the samples z and y conditioned on the obser-
vations ` is
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where C denotes the constant terms.

Proof. The result follows by multiplying the probabilities stated in Lemmas 3.3,
3.4, and 3.5, and applying the logarithm function.

3.3.3 Parameter estimation

In Subsection 3.3.1, we described a collapsed Gibbs sampler for sampling the pos-
teriors of the categorical random variables. Below, Lemmas 3.7, 3.8, and 3.9 show
how these samples, denoted as y and z, can be used to approximate the posterior
expectations of ∞, µ, ¡, and ß.

Lemma 3.7. The expectation of ∞ given the observed geographical coordinates and
the posterior samples is
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where the counts m·, f
·,w are defined in the appendix.
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Lemma 3.8. The expectation of µ given the observed geographical coordinates and
the posterior samples is
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where the counts mk, f
u,· and m·, f

u,· are defined in the appendix.
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Lemma 3.9. The expectations of ¡ and ß given the observed geographical coordi-
nates and the posterior samples is
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Parameters µ̂u
k , §̂k

u, and v̂u
k are defined in the proof of Lemma 3.1.
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3.4 Experiments

We demonstrate the empirical capabilities of our models by applying them to two
datasets, a dense cellular carrier dataset and a sparse mobile application dataset,
whose density profiles are depicted in Figure 3.1. We assess our models quantita-
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tively by measuring their location prediction performance and held-out likelihood.
We also assess our models qualitatively by inspecting their inferred place clusters
and the temporal distributions they associate with these clusters.

The sparse mobile application dataset consists of 5007 users and the dense cel-
lular carrier dataset consists of 1000 users. For both dataset, each data point com-
prises a user ID, local time, and geographic coordinates (i.e. latitude and longitude).
During preprocessing, we check if a user has logged multiple observations during
the same hour, and if so, we replace these observations with their geometric me-
dian, computed using Weiszfeld’s algorithm. We then sort the data chronologically,
and for each user, we partition the earlier 90% as training data and the subsequent
10% as test data.

When we applied CPM to our datasets, we observed that constraining all users
to have the same place distribution yields worse predictive performance than base-
line methods. Thus, we combined CPM and SPM to form a two-stage approach.
In the first stage, we train a separate CPM for each user and each K 2 {1, . . . ,10},
where K denotes the number of places, and for each user, we select the K parameter
where the corresponding model has the highest training likelihood. In the second
stage, we train a single SPM, and for each user, we use the K parameter that was
determined in the previous stage.

We evaluate a method’s location prediction performance by measuring the dis-
tance between its predicted coordinate and the actual observed coordinate. Let ∞̂, µ̂,
¡̂, and ß̂ be the posterior expectations computed in Section 3.3. Given a user u and
a weekhour w, our method makes a prediction by first computing the place cluster
with the highest posterior weight, k̂u,w = argmaxk

P

f ∞̂w, f µ̂
f
u,k, and then outputting

the posterior mean of that place cluster, ¡̂k̂u,w
u . In contrast, the baseline method,

which we call the user weekhour mode (UWM), partitions the coordinate space and
assigns each observation in the training data to a grid cell. For a given user and
weekhour, UWM makes a prediction by outputting the corresponding mode, which
is the centroid of the grid cell with the highest number of historical observations.
If a user has no previous observation at the query weekhour, UWM outputs the
global mode for that user instead. The grid cell edge size is chosen optimally from
{100,250,500} to minimize the median distance error.

In Figure 3.3, we display the error distributions of SPM and UWM on held-out

69



Figure 3.3: Error distributions of UWM (top) and SPM (bottom) on held-out data. UWM yields a
median distance error of 2546 meters, whereas SPM yields a median distance error of 2032 meters,
a reduction in error of 20%. Furthermore, compared to UWM, SPM predicts many more examples
with error less than 100 meters.

data. UWM yields a median distance error of 2546 meters, whereas SPM yields a
median distance error of 2032 meters, a reduction in error of 20%. Furthermore,
due to discretization, UWM predicts much fewer examples than SPM as having er-
ror less than 100 meters. If we increase UWM’s grid cell resolution, the discretiza-
tion effect is diminished, but then UWM’s median distance error takes a hit. In
contrast to UWM, SPM does not suffer from such trade-offs, and yields both lower
median distance error and more predictions with high accuracy.

We evaluate our method qualitatively by analyzing the inferred place clusters
and temporal distributions. We focus our analysis on a single user who gave us
permission to dissect his location data publicly. CPM obtains its highest train-
ing likelihood when it partitions the user’s location data into 8 places. In Figure
3.4, we depict the user’s posterior place distributions, computed using

P

f ∞̂w, f µ̂
f
u.
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The top plot corresponds to CPM, and because location data is sparse, CPM learns
place distributions that are jagged. In contrast, SPM copes with sparsity by shar-
ing information across users, and consequently, learns place distributions that are
smooth. In fact, SPM infers weekhour patterns that are reminiscient of home (Place
0) and work (Place 1), even though the user did not log any location data during
most weekhours.

In Figure 3.5, we display the spatial cluster associated with place 0. The blue
circles represent the user’s historical observations and the blue pin represents the
cluster center inferred by our model. Since our model is Bayesian and the predic-
tive distribution associated with the cluster is a robust t-distribution, the outlier
ping at the figure’s far right side is not able to sway the cluster center too much.
Furthermore, as depicted in Figure 3.4, the temporal distribution associated with
place 0 is similar to a home distribution; it dips during typical work hours and
peaks otherwise. We verified that the cluster center, represented as a blue pin, is
within 50 meters of the user’s apartment.

In Figure 3.6, we display the spatial cluster associated with place 1. The yellow
circles represent the user’s historical observations and the yellow pin represents
the cluster center inferred by our model. In Figure 3.4, the temporal distribution
associated with place 1 is similar to a work distribution; it peaks during typical
work hours and dips otherwise. We verified that the cluster center, represented as
a yellow pin, is within 50 meters of the user’s work place.

In Figure 3.7, we display the spatial cluster associated with place 3. The orange
circles represent the user’s historical observations and the orange pin represents
the cluster center inferred by our model. The posterior covariance associated with
place 3 is much larger than the ones associated with previous places; the previous
places covered only couple blocks whereas place 3 covers many more. A closer look
at Figure 3.4 reveals that probability of place 3 peaks during the weekend. In fact,
we verified that the user spends leisure time in this area.

When the goal is location prediction, our method always predicts a single geo-
graphic coordinate, the posterior mean of the most probable place cluster, associ-
ated with the query user and weekhour. However, our model actually constructs
a much richer representation of how users relate to their geography and creates
a probability distribution over the entire space of geographic coordinates. For ex-
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Figure 3.4: Place distributions inferred by CPM (top) and SPM (bottom). Because of sparsity, CPM
learns place distributions that are jagged. In contrast, SPM shares information across users and
learns place distributions that are smooth. Furthermore, SPM infers weekhour patterns that are
reminiscient of home (Place 0) and work (Place 1), even though the user was not observed during
most weekhours.
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Figure 3.5: User’s spatial cluster associated with place 0. The blue circles represent the user’s
historical observations and the blue pin represents the cluster center inferred by our model. Since
the predictive distribution associated with the cluster is a robust t-distribution, the outlier ping at
the figure’s far right side is not able to sway the cluster center too much. Furthermore, we verified
that the cluster center, represented by a blue pin, is within 50 meters of the user’s apartment.

Figure 3.6: User’s spatial cluster associated with place 1. The yellow circles represent the user’s
historical observations and the yellow pin represents the cluster center inferred by our model. We
verified that the cluster center, represented by a yellow pin, is within 50 meters of the user’s work
place.
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Figure 3.7: User’s spatial cluster associated with place 3. The orange circles represent the user’s
historical observations and the orange pin represents the cluster center inferred by our model. The
posterior covariance associated with place 3 is much larger than the ones associated with previous
places. We verified that the user spends leisure time in this area.

ample, for the user above, even though place 0 dominates all other place clusters
during the weekend, the model nevertheless assigns a significant probability to
place 2. Thus, even if we do not use the place clusters other than the top one for lo-
cation prediction, learning a full probabilistic representation of users’ whereabouts
is important, as it enables many applications that make decisions based on rich
geographic profiles rather than simple point estimates.

3.5 Discussion

In this chapter, we developed two unsupervised Bayesian graphical models, both
of which construct a complete profile of users’ whereabouts based on sparse geo-
graphic coordinates. We demonstrated that our models outperform a simple but
strong baseline with respect to predicting users’ future geographic coordinates. We
also showed that, aside from location prediction, our models identify users’ signifi-
cant places and infer temporal descriptions of how users spend their time in them.
We provided a quantitative analysis of our method on a sparse mobile application
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dataset, as well as qualitatively demonstrating the place clusters and hourly place
distributions inferred by our method on a particular user.

3.6 Appendix

3.6.1 Miscellaneous notation

Throughout the chapter, we use various notations to represent sets of indices and
their cardinalities. Vectors y and z denote the component and place assignments in
SPM, respectively. Each vector entry is identified by a tuple index (u,w,n), where
u 2 {1, . . . ,U} is a user, w 2 {1, . . . ,W} is a weekhour, and n 2

©

1, . . . , Nu,w
™

is an itera-
tion index.

For the subsequent notations, we assume that the random variables y and z are
already sampled. We refer to a subset of indices using

Mk0, f0
u0,w0 =

©

(u̇, ẇ, ṅ) | zu̇,ẇ,ṅ = k0, yu̇,ẇ,ṅ = f0, u̇ = u0, ẇ = w0
™

,

where u0 denotes the user, w0 denotes the weekhour, k0 denotes the place, and f0

denotes the component. If we want the subset of indices to be unrestricted with
respect to a category, we use the placeholder “·”. For example,

M·, f0
u0,w0 =

©

(u̇, ẇ, ṅ) | yu̇,ẇ,ṅ = f0, u̇ = u0, ẇ = w0
™

has no constraints with respect to places.
Given a subset of indices denoted by M, the lowercase m = |M| denotes its car-

dinality. For example, given a set of indices

M·, f0
u0,· =

©

(u̇, ẇ, ṅ) | zu̇,ẇ,ṅ = ·, yu̇,ẇ,ṅ = f0, u̇ = u0, ẇ = w0
™

,

its cardinality is
m·, f0

u0,· =
Ø

Ø

Ø

M·, f0
u0,·

Ø

Ø

Ø

.

For the collapsed Gibbs sampler, the sets of indices and cardinalities used in the
derivations exclude the index that will be sampled. We use “ª” to modify sets or
cardinalities for this exclusion. Let (u,w,n) denote the index that will be sampled,
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then given an index set M, let M̃ = M ° {(u,w,n)} represent the excluding set and
let m̃ =

Ø

ØM̃
Ø

Ø represent the corresponding cardinality. For example,

M̃·, f0
u0,· = M·, f0

u0,·° {(u,w,n)}

and
m̃·, f0

u0,· =
Ø

Ø

Ø

M̃·, f0
u0,·

Ø

Ø

Ø

.

In the proof of Lemma 3.1, parameters ṽu
k , µ̃u

k , §̃k
u, and p̃u

k are defined using car-
dinalities that exclude the current index (u,w,n). Similarly, in the proof of Lemma
3.9, parameters µ̂u

k , §̂k
u, and v̂u

k are defined like their wiggly versions, but the counts
used in their definitions do not exclude the current index.

3.6.2 Probability distributions

Let °2 denote a bivariate gamma function, defined as

°2 (a)=º
1
2

2
Y

j=1
°

µ

a+ 1° j
2

∂

.

Let ∫> 1 and let § 2 R2£2 be a positive definite scale matrix. The inverse-Wishart
distribution, which is the conjugate prior to the multivariate normal distribution,
is defined as

IW (ß |§,∫)=
|§| ∫2

2∫°2
°

∫
2
¢ |ß|

°∫°3
2 exp

µ

°1
2

tr
°

§ß°1¢
∂

.

Let ß 2 R2£2 be a positive definite covariance matrix and let µ 2 R2 denote a mean
vector. The multivariate normal distribution is defined as

N
°

` |µ,ß
¢

= (2º)°1 |ß|°
1
2 exp

µ

°1
2

°

`°µ
¢T
ß°1 °

`°µ
¢

∂

.

Let ∫> 1 and let ß 2R2£2, then the 2-dimensional t-distribution is defined as

tv
°

x |µ,ß
¢

=
°

°

∫
2 +1

¢

°
°

∫
2
¢

|ß|° 1
2
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µ

1+ 1
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x°µ
¢T
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x°µ
¢

∂° ∫
2°1

.
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Let K > 1 be the number of categories and let Æ= (Æ1, . . . ,ÆK ) be the concentration
parameters, where Æk > 0 for all k 2 {1, . . . ,K}. Then, the K-dimensional Dirichlet
distribution, which is the conjugate prior to the categorical distribution, is defined
as

DirichletK (x |Æ)=
1

B (Æ)

K
Y

k=1
xÆk°1

k ,

where

B (Æ)=

K
Q

k=1
° (Æk)

°

µ K
P

k=1
Æk

∂

.

We abuse the Dirichlet notation slightly and use it to define the K-dimensional sym-
metric Dirichlet distribution as well. Let Ø> 0 be a scalar concentration parameter.
Then, the symmetric Dirichlet distribution is defined as

DirichletK
°

x |Ø
¢

=DirichletK (x |Æ1, . . . ,ÆK ) ,

where Ø=Æk for all k 2 {1, . . . ,K}.
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Conclusion

In this thesis, we developed rigorous characterizations of three fundamental prob-
lems that involve location data, proposed novel machine learning methods for them,
and justified these methods theoretically and empirically.

In Chapter 1, we presented a probabilistic graphical model that locates radio-
tagged animals and learns their movement patterns. Our method incorporated
both geographical and non-geographical spatial features and provided researchers
with an interpretable model that enunciates the relationship between the animal
and its environment. We showed that our model generalizes random walk and
demonstrated empirically that a richer model improves animal location estimates.
We also provided a fast parameter estimation algorithm and demonstrated its effec-
tiveness both asymptotically and empirically. We applied our model to real datasets
and demonstrated that it outperforms the most popular radio telemetry software
package in ecology.

In Chapter 2, we formulated a new collaborative ranking framework, called
Collaborative Local Ranking (CLR), which allowed us to formulate a wide variety
of real-world ranking tasks that involve local and implicit feedback. We justified
CLR with a bound on its generalization error. We also derived a simple alternating
minimization algorithm and showed that each minimization step can be efficiently
computed in time independent of the size of the training data. We applied CLR to a
venue recommendation task and demonstrated that it outperforms state-of-the-art
collaborative ranking methods, both in terms of generalization performance and
running time.

In Chapter 3, we developed two unsupervised Bayesian graphical models, both
of which construct a complete profile of users’ whereabouts based on sparse geo-
graphic coordinates. We demonstrated that our models outperform a simple but
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strong baseline with respect to predicting users’ future geographic coordinates. We
also showed that, aside from location prediction, our models identify users’ signifi-
cant places and infer temporal descriptions of how users spend their time in them.
We provided a quantitative analysis of our method on a sparse mobile application
dataset, as well as qualitatively demonstrating the place clusters and hourly place
distributions inferred by our method on specific users.

There are a multitude of ways that our research can be improved upon. In
Chapter 2, we described CLR as a general collaborative ranking framework, and
applying it to domains that do not involve location data would strengthen its case.
In Chapter 3, we used a computationally expensive search procedure to determine
the optimal number of places for each user, and designing non-parametric versions
of our models with stochastic inference could improve both the efficiency and gener-
alization capability of our methods. We leave the resolution of these open problems
to future work.
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